Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bhattacharya, Bishakh

  • Google
  • 3
  • 7
  • 15

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Wave propagation study in metamaterial sandwich structure with periodically inserted hourglass resonators1citations
  • 2022Voltage modulation of elastic properties of asymmetric hybrid lattice structure1citations
  • 2022Design and development of non-magnetic hierarchical actuator powered by shape memory alloy based bipennate muscle13citations

Places of action

Chart of shared publication
Gupta, Vivek
1 / 5 shared
Singh, Amanpreet
2 / 2 shared
Adhikari, Sondipon
1 / 9 shared
Mukhopadhyay, Tanmoy
1 / 43 shared
Harsha, A. Sri
1 / 1 shared
Chaurasiya, Kanhaiya Lal
1 / 1 shared
Sinha, Yashaswi
1 / 1 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Gupta, Vivek
  • Singh, Amanpreet
  • Adhikari, Sondipon
  • Mukhopadhyay, Tanmoy
  • Harsha, A. Sri
  • Chaurasiya, Kanhaiya Lal
  • Sinha, Yashaswi
OrganizationsLocationPeople

article

Design and development of non-magnetic hierarchical actuator powered by shape memory alloy based bipennate muscle

  • Harsha, A. Sri
  • Chaurasiya, Kanhaiya Lal
  • Bhattacharya, Bishakh
  • Sinha, Yashaswi
Abstract

<jats:title>Abstract</jats:title><jats:p>Actuators are ubiquitous to generate controlled motion through the application of suitable excitation force or torque to perform various operations in manufacturing and industrial automation. The demands placed on faster, smaller, and efficient actuators drive innovation in actuator development. Shape memory alloy (SMA) based actuators have multiple advantages over conventional actuators, including high power-to-weight ratio. This paper integrates the advantages of pennate muscle of a biological system and the unique properties of SMA to develop SMA-based bipennate actuator. The present study explores and expands on the previous SMA actuators by developing the mathematical model of the new actuator based on the bipennate arrangement of the SMA wires and experimentally validating it. The new actuator is found to deliver at least five times higher actuation forces (up to 150 N) in comparison to the reported SMA-based actuators. The corresponding weight reduction is about 67%. The results from the sensitivity analysis of the mathematical model facilitates customization of the design parameters and understanding critical parameters. This study further introduces an Nth level hierarchical actuator that can be deployed for further amplification of actuation forces. The SMA-based bipennate muscle actuator has broad applications ranging from building automation controls to precise drug delivery systems.</jats:p>

Topics
  • impedance spectroscopy
  • wire