Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kasem, Md. Riad

  • Google
  • 1
  • 9
  • 29

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Robustness of superconductivity to external pressure in high-entropy-alloy-type metal telluride AgInSnPbBiTe529citations

Places of action

Chart of shared publication
Yamashita, Aichi
1 / 5 shared
Nakahira, Yuki
1 / 5 shared
Matsumoto, Ryo
1 / 1 shared
Takano, Yoshihiko
1 / 4 shared
Yamaoka, Hitoshi
1 / 2 shared
Hiraoka, Nozomu
1 / 5 shared
Goto, Yosuke
1 / 1 shared
Ishii, Hirofumi
1 / 4 shared
Mizuguchi, Yoshikazu
1 / 5 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Yamashita, Aichi
  • Nakahira, Yuki
  • Matsumoto, Ryo
  • Takano, Yoshihiko
  • Yamaoka, Hitoshi
  • Hiraoka, Nozomu
  • Goto, Yosuke
  • Ishii, Hirofumi
  • Mizuguchi, Yoshikazu
OrganizationsLocationPeople

article

Robustness of superconductivity to external pressure in high-entropy-alloy-type metal telluride AgInSnPbBiTe5

  • Yamashita, Aichi
  • Nakahira, Yuki
  • Matsumoto, Ryo
  • Takano, Yoshihiko
  • Yamaoka, Hitoshi
  • Hiraoka, Nozomu
  • Goto, Yosuke
  • Ishii, Hirofumi
  • Mizuguchi, Yoshikazu
  • Kasem, Md. Riad
Abstract

<jats:title>Abstract</jats:title><jats:p>High-entropy-alloy (HEA) superconductors are a new class of disordered superconductors. However, commonality of superconducting characteristics of HEA materials is unclear. Here, we have investigated the crystal and electronic structure, and the robustness of superconducting states in a HEA-type metal telluride (<jats:italic>M</jats:italic>Te; <jats:italic>M</jats:italic> = Ag, In, Sn, Pb, Bi) under high pressure, and the results were compared with the pressure effects for a middle-entropy system (AgPbBiTe<jats:sub>3</jats:sub>) and a reference system of PbTe. When the crystal structure is CsCl-type, all phases show superconductivity under high pressure but exhibit different pressure dependences of the transition temperature (<jats:italic>T</jats:italic><jats:sub>c</jats:sub>). For PbTe, its <jats:italic>T</jats:italic><jats:sub>c</jats:sub> decreases with pressure. In contrast, the <jats:italic>T</jats:italic><jats:sub>c</jats:sub> of HEA-type AgInSnPbBiTe<jats:sub>5</jats:sub> is almost independent of pressure, for pressures ranging from 13.0 to 35.1 GPa. Those results suggest that the robustness of superconductivity to external pressure is linked to the configurational entropy of mixing at the <jats:italic>M</jats:italic> site in <jats:italic>M</jats:italic>Te. Since the trend is quite similar to previous work on a HEA (Ti–Zr–Hf–Nb–Ta), where the robustness of superconductivity was observed up to ~ 200 GPa, we propose that the robustness of superconductivity under high pressure would be a universal feature in HEA-type superconductors.</jats:p>

Topics
  • impedance spectroscopy
  • phase
  • superconductivity
  • superconductivity