Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pradeep, Sai Aditya

  • Google
  • 2
  • 6
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Composites 4.0: Enabling the Modernization of Legacy Manufacturing Assets in South Carolina1citations
  • 2022Design and manufacturing of roller bearing polymeric cages and development of a theoretical model for predicting the roller push-out force5citations

Places of action

Chart of shared publication
Pilla, Srikanth
2 / 3 shared
Deshpande, Amit Makarand
1 / 1 shared
Keskar, Gautami Girish
1 / 1 shared
Zarei, Alireza
1 / 1 shared
Lukasiewicz, Rob
1 / 1 shared
Driscoll, John
1 / 1 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Pilla, Srikanth
  • Deshpande, Amit Makarand
  • Keskar, Gautami Girish
  • Zarei, Alireza
  • Lukasiewicz, Rob
  • Driscoll, John
OrganizationsLocationPeople

article

Design and manufacturing of roller bearing polymeric cages and development of a theoretical model for predicting the roller push-out force

  • Zarei, Alireza
  • Pilla, Srikanth
  • Lukasiewicz, Rob
  • Driscoll, John
  • Pradeep, Sai Aditya
Abstract

<jats:title>Abstract</jats:title><jats:p>In the present work, polymeric cages with 18 different pocket geometries are developed to investigate the effects of geometrical parameters and material properties on the amount of roller push-out force. An experimental setup including a specialized injection molding tool is designed and fabricated and three sets of polymeric cages are manufactured using the selected materials (PA46, PA66, PPA). Force measurements are carried out five times on each pocket and three cages for each material are tested. Considering three different materials, a total of 810 force measurements are performed. A theoretical model is developed to predict the roller push-out forces in polymeric cages with different materials and pocket geometries. The model is developed by estimating the deformed region of the cage as a cantilever beam with a parabolic profile. An empirical coefficient is reposed in the model to compensate for the assumptions applied to the model. Experimental results showed that a fixed coefficient gives accurate results for all the geometries and materials, which confirms the validity of the approach adopted in this paper for modeling such problems. Considering the geometrical and material tolerances, force limits predicted by the model cover all the forces measured for a specific pocket with excellent accuracy and consistency.</jats:p>

Topics
  • impedance spectroscopy
  • injection molding