Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lehto, Markku

  • Google
  • 1
  • 6
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Identifying volatile in vitro biomarkers for oral bacteria with proton-transfer-reaction mass spectrometry and gas chromatography-mass spectrometry.13citations

Places of action

Chart of shared publication
Halonen, Lauri
1 / 1 shared
Hartonen, Kari Mikael
1 / 2 shared
Metsälä, Markus
1 / 1 shared
Groop, Per-Henrik
1 / 2 shared
Pussinen, Pirkko
1 / 2 shared
Roslund, Kajsa
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Halonen, Lauri
  • Hartonen, Kari Mikael
  • Metsälä, Markus
  • Groop, Per-Henrik
  • Pussinen, Pirkko
  • Roslund, Kajsa
OrganizationsLocationPeople

article

Identifying volatile in vitro biomarkers for oral bacteria with proton-transfer-reaction mass spectrometry and gas chromatography-mass spectrometry.

  • Halonen, Lauri
  • Hartonen, Kari Mikael
  • Metsälä, Markus
  • Lehto, Markku
  • Groop, Per-Henrik
  • Pussinen, Pirkko
  • Roslund, Kajsa
Abstract

We have measured the volatile fingerprints of four pathogenic oral bacteria connected to periodontal disease and dental abscess: Porphyromonas gingivalis (three separate strains), Prevotella intermedia, Prevotella nigrescens and Tannerella forsythia. Volatile fingerprints were measured in vitro from the headspace gas of the bacteria cultured on agar. Concrete identification of new and previously reported bacterial volatiles were performed by a combination of solid phase microextraction (SPME) and offline gas chromatography-mass spectrometry (GC-MS). We also studied the effect of the reduced electric field strength (E/N) on the fragmentation patterns of bacterial volatiles in online proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF-MS). We aimed to discover possible new biomarkers for the studied oral bacteria, as well as to validate the combination of GC-MS and PTR-MS for volatile analysis. Some of the most promising compounds produced include: 1-Methyl-1,2,3,4-tetrahydroisoquinoline (1MeTIQ), indole, and a cascade of sulphur compounds, such as methanethiol, dimethyl disulphide (DMDS) and dimethyl trisulphide (DMTS). We also found that several compounds, especially alcohols, aldehydes and esters, fragment significantly with the PTR-MS method, when high E/N values are used. We conclude that the studied oral bacteria can be separated by their volatile fingerprints in vitro, which could have importance in clinical and laboratory environments. In addition, using softer ionization conditions can improve the performance of the PTR-MS method in the volatile analysis of certain compounds.

Topics
  • compound
  • phase
  • strength
  • gas chromatography
  • ester
  • alcohol
  • spectrometry
  • aldehyde
  • Sulphur
  • time-of-flight mass spectrometry
  • gas chromatography-mass spectrometry
  • solid-phase micro-extraction
  • microextraction