Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Goswami, Somdatta

  • Google
  • 1
  • 4
  • 26

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Robust topological designs for extreme metamaterial micro-structures26citations

Places of action

Chart of shared publication
Adhikari, Sondipon
1 / 9 shared
Chatterjee, Tanmoy
1 / 1 shared
Friswell, Michael I.
1 / 9 shared
Chakraborty, Souvik
1 / 6 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Adhikari, Sondipon
  • Chatterjee, Tanmoy
  • Friswell, Michael I.
  • Chakraborty, Souvik
OrganizationsLocationPeople

article

Robust topological designs for extreme metamaterial micro-structures

  • Adhikari, Sondipon
  • Chatterjee, Tanmoy
  • Goswami, Somdatta
  • Friswell, Michael I.
  • Chakraborty, Souvik
Abstract

<jats:title>Abstract</jats:title><jats:p>We demonstrate that the consideration of material uncertainty can dramatically impact the optimal topological micro-structural configuration of mechanical metamaterials. The robust optimization problem is formulated in such a way that it facilitates the emergence of extreme mechanical properties of metamaterials. The algorithm is based on the bi-directional evolutionary topology optimization and energy-based homogenization approach. To simulate additive manufacturing uncertainty, combinations of spatial variation of the elastic modulus and/or, parametric variation of the Poisson’s ratio at the unit cell level are considered. Computationally parallel Monte Carlo simulations are performed to quantify the effect of input material uncertainty to the mechanical properties of interest. Results are shown for four configurations of extreme mechanical properties: (1) maximum bulk modulus (2) maximum shear modulus (3) minimum negative Poisson’s ratio (auxetic metamaterial) and (4) maximum equivalent elastic modulus. The study illustrates the importance of considering uncertainty for topology optimization of metamaterials with extreme mechanical performance. The results reveal that robust design leads to improvement in terms of (1) optimal mean performance (2) least sensitive design, and (3) elastic properties of the metamaterials compared to the corresponding deterministic design. Many interesting topological patterns have been obtained for guiding the extreme material robust design.</jats:p>

Topics
  • impedance spectroscopy
  • simulation
  • homogenization
  • metamaterial
  • additive manufacturing
  • bulk modulus