Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Vargas, Nicolás M.

  • Google
  • 1
  • 7
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021A quantum material spintronic resonator5citations

Places of action

Chart of shared publication
Trastoy, Juan
1 / 4 shared
Grollier, Julie
1 / 5 shared
Kent, Andrew D.
1 / 4 shared
Lapa, Pavel N.
1 / 1 shared
Schuller, Ivan K.
1 / 4 shared
Xu, Jun-Wen
1 / 2 shared
Chen, Yizhang
1 / 2 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Trastoy, Juan
  • Grollier, Julie
  • Kent, Andrew D.
  • Lapa, Pavel N.
  • Schuller, Ivan K.
  • Xu, Jun-Wen
  • Chen, Yizhang
OrganizationsLocationPeople

article

A quantum material spintronic resonator

  • Trastoy, Juan
  • Vargas, Nicolás M.
  • Grollier, Julie
  • Kent, Andrew D.
  • Lapa, Pavel N.
  • Schuller, Ivan K.
  • Xu, Jun-Wen
  • Chen, Yizhang
Abstract

<jats:title>Abstract</jats:title><jats:p>In a spintronic resonator a radio-frequency signal excites spin dynamics that can be detected by the spin-diode effect. Such resonators are generally based on ferromagnetic metals and their responses to spin torques. New and richer functionalities can potentially be achieved with quantum materials, specifically with transition metal oxides that have phase transitions that can endow a spintronic resonator with hysteresis and memory. Here we present the spin torque ferromagnetic resonance characteristics of a hybrid metal-insulator-transition oxide/ ferromagnetic metal nanoconstriction. Our samples incorporate <jats:inline-formula><jats:alternatives><jats:tex-math>{ {V}}_2{ {O}}_3</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>V</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi>O</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:mrow></mml:math></jats:alternatives></jats:inline-formula>, with Ni, Permalloy (<jats:inline-formula><jats:alternatives><jats:tex-math>{ {Ni}}_{80}{ {Fe}}_{20}</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mtext>Ni</mml:mtext><mml:mn>80</mml:mn></mml:msub><mml:msub><mml:mtext>Fe</mml:mtext><mml:mn>20</mml:mn></mml:msub></mml:mrow></mml:math></jats:alternatives></jats:inline-formula>) and Pt layers patterned into a nanoconstriction geometry. The first order phase transition in <jats:inline-formula><jats:alternatives><jats:tex-math>{ {V}}_2{ {O}}_3</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>V</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi>O</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:mrow></mml:math></jats:alternatives></jats:inline-formula> is shown to lead to systematic changes in the resonance response and hysteretic current control of the ferromagnetic resonance frequency. Further, the output signal can be systematically varied by locally changing the state of the <jats:inline-formula><jats:alternatives><jats:tex-math>{ {V}}_2{ {O}}_3</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>V</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi>O</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:mrow></mml:math></jats:alternatives></jats:inline-formula> with a dc current. These results demonstrate new spintronic resonator functionalities of interest for neuromorphic computing.</jats:p>

Topics
  • impedance spectroscopy
  • phase
  • phase transition