People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Stump, B.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2021A stochastic scan strategy for grain structure control in complex geometries using electron beam powder bed fusioncitations
- 2021Microstructure and properties of additively manufactured Al–Ce–Mg alloyscitations
- 2020Sensitivity of Thermal Predictions to Uncertain Surface Tension Data in Laser Additive Manufacturingcitations
Places of action
Organizations | Location | People |
---|
article
Microstructure and properties of additively manufactured Al–Ce–Mg alloys
Abstract
<jats:title>Abstract</jats:title><jats:p>Additive manufacturing of aluminum alloys is largely dominated by a near-eutectic Al-Si compositions, which are highly weldable, but have mechanical properties that are not competitive with conventional wrought Al alloys. In addition, there is a need for new Al alloys with improved high temperature properties and thermal stability for applications in the automotive and aerospace fields. In this work, we considered laser powder bed fusion additive manufacturing of two alloys in the Al–Ce–Mg system, designed as near-eutectic (Al–11Ce–7Mg) and hyper-eutectic (Al–15Ce–9Mg) compositions with respect to the binary L → Al + Al<jats:sub>11</jats:sub>Ce eutectic reaction. The addition of magnesium is used to promote solid solution strengthening. A custom laser scan pattern was used to reduce the formation of keyhole porosity, which was caused by excessive vaporization due to the high vapor pressure of magnesium. The microstructure and tensile mechanical properties of the alloys were characterized in the as-fabricated condition and following hot isostatic pressing. The two alloys exhibit significant variations in solidification structure morphology. These variations in non-equilibrium solidification structure were rationalized using a combination of thermodynamic and thermal modeling. Both alloys showed higher yield strength than AM Al-10Si-Mg for temperatures up to 350 °C and better strength retention at elevated temperatures than additively manufactured Scalmaloy.</jats:p>