Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hosokawa, Yoichiroh

  • Google
  • 2
  • 13
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Focusing of Particles in a Microchannel with Laser Engraved Groove Arrays7citations
  • 2021Hydrodynamic particle focusing enhanced by femtosecond laser deep grooving at low Reynolds numbers10citations

Places of action

Chart of shared publication
Yalikun, Yaxiaer
2 / 4 shared
Okano, Kazunori
2 / 2 shared
Tanaka, Yo
2 / 3 shared
Kiya, Ryota
1 / 1 shared
Anggraini, Dian
2 / 2 shared
Uno, Hanaka
1 / 1 shared
Li, Ming
2 / 17 shared
Tang, Tao
2 / 2 shared
Inglis, David
1 / 1 shared
Hao, Yansheng
1 / 1 shared
Teranishi, Norihiro
1 / 1 shared
Akita, Eri
1 / 1 shared
Namoto, Misuzu
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Yalikun, Yaxiaer
  • Okano, Kazunori
  • Tanaka, Yo
  • Kiya, Ryota
  • Anggraini, Dian
  • Uno, Hanaka
  • Li, Ming
  • Tang, Tao
  • Inglis, David
  • Hao, Yansheng
  • Teranishi, Norihiro
  • Akita, Eri
  • Namoto, Misuzu
OrganizationsLocationPeople

article

Hydrodynamic particle focusing enhanced by femtosecond laser deep grooving at low Reynolds numbers

  • Inglis, David
  • Yalikun, Yaxiaer
  • Hao, Yansheng
  • Okano, Kazunori
  • Tanaka, Yo
  • Teranishi, Norihiro
  • Hosokawa, Yoichiroh
  • Akita, Eri
  • Anggraini, Dian
  • Namoto, Misuzu
  • Li, Ming
  • Tang, Tao
Abstract

<jats:title>Abstract</jats:title><jats:p>Microfluidic focusing of particles (both synthetic and biological), which enables precise control over the positions of particles in a tightly focused stream, is a prerequisite step for the downstream processing, such as detection, trapping and separation. In this study, we propose a novel hydrodynamic focusing method by taking advantage of open v-shaped microstructures on a glass substrate engraved by femtosecond pulse (fs) laser. The fs laser engraved microstructures were capable of focusing polystyrene particles and live cells in rectangular microchannels at relatively low Reynolds numbers (Re). Numerical simulations were performed to explain the mechanisms of particle focusing and experiments were carried out to investigate the effects of groove depth, groove number and flow rate on the performance of the groove-embedded microchannel for particle focusing. We found out that 10-µm polystyrene particles are directed toward the channel center under the effects of the groove-induced secondary flows in low-Re flows, e.g. Re &lt; 1. Moreover, we achieved continuous focusing of live cells with different sizes ranging from 10 to 15 µm, i.e. human T-cell lymphoma Jurkat cells, rat adrenal pheochromocytoma PC12 cells and dog kidney MDCK cells. The glass grooves fabricated by fs laser are expected to be integrated with on-chip detection components, such as contact imaging and fluorescence lifetime-resolved imaging, for various biological and biomedical applications, where particle focusing at a relatively low flow rate is desirable.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • experiment
  • simulation
  • glass
  • glass