Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Castro, Ana I. Gómez De

  • Google
  • 1
  • 9
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Graphite to diamond transition induced by photoelectric absorption of ultraviolet photons5citations

Places of action

Chart of shared publication
Isidro-Gómez, Federico P. De
1 / 1 shared
Britten, James
1 / 1 shared
Lis-Sánchez, Tomas De
1 / 1 shared
Castilla, Maribel
1 / 1 shared
Isidro, Federico De
1 / 1 shared
Rheinstädter, Maikel
1 / 1 shared
Clancy, Patrick
1 / 1 shared
Piris, Mariona Cabero
1 / 2 shared
Larruquert, Juan
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Isidro-Gómez, Federico P. De
  • Britten, James
  • Lis-Sánchez, Tomas De
  • Castilla, Maribel
  • Isidro, Federico De
  • Rheinstädter, Maikel
  • Clancy, Patrick
  • Piris, Mariona Cabero
  • Larruquert, Juan
OrganizationsLocationPeople

article

Graphite to diamond transition induced by photoelectric absorption of ultraviolet photons

  • Isidro-Gómez, Federico P. De
  • Britten, James
  • Lis-Sánchez, Tomas De
  • Castilla, Maribel
  • Isidro, Federico De
  • Rheinstädter, Maikel
  • Clancy, Patrick
  • Castro, Ana I. Gómez De
  • Piris, Mariona Cabero
  • Larruquert, Juan
Abstract

<jats:title>Abstract</jats:title><jats:p>The phase transition from graphite to diamond is an appealing object of study because of many fundamental and also, practical reasons. The out-of-plane distortions required for the transition are a good tool to understand the collective behaviour of layered materials (graphene, graphite) and the van der Waals forces. As today, two basic processes have been successfully tested to drive this transition: strong shocks and high energy femtolaser excitation. They induce it by increasing either pressure or temperature on graphite. In this work, we report a third method consisting in the irradiation of graphite with ultraviolet photons of energies above 4.4 eV. We show high resolution electron microscopy images of pyrolytic carbon evidencing the dislocation of the superficial graphitic layers after irradiation and the formation of crystallite islands within them. Electron energy loss spectroscopy of the islands show that the sp<jats:sup>2</jats:sup> to sp<jats:sup>3</jats:sup> hybridation transition is a surface effect. High sensitivity X-ray diffraction experiments and Raman spectroscopy confirm the formation of diamond within the islands.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • Carbon
  • phase
  • x-ray diffraction
  • experiment
  • layered
  • phase transition
  • dislocation
  • electron microscopy
  • Raman spectroscopy
  • electron energy loss spectroscopy