People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pandey, Lalit M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2022Physical, chemical, and biological investigations of composites for biomedical applicationscitations
- 2021Effect of surface functionalization on the heating efficiency of magnetite nanoclusters for hyperthermia applicationcitations
- 2021Microstructural, electrical and biological activity in $$mathrm{Ca}_{10}(mathrm{PO}_4)_6(mathrm{OH})_2-mathrm{Ba}_{0.5}mathrm{Sr}_{0.5}mathrm{TiO}_3$$ ceramic composites designed for tissue engineering applicationscitations
Places of action
Organizations | Location | People |
---|
article
Microstructural, electrical and biological activity in $$mathrm{Ca}_{10}(mathrm{PO}_4)_6(mathrm{OH})_2-mathrm{Ba}_{0.5}mathrm{Sr}_{0.5}mathrm{TiO}_3$$ ceramic composites designed for tissue engineering applications
Abstract
<jats:title>Abstract</jats:title><jats:p>The article investigates electrically active ceramic composite of <jats:inline-formula><jats:alternatives><jats:tex-math>{Ca}_{10}({PO}_4)_6({OH})_2</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Ca</mml:mi><mml:mn>10</mml:mn></mml:msub><mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:msub><mml:mi>PO</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:mo>)</mml:mo></mml:mrow><mml:mn>6</mml:mn></mml:msub><mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mi>OH</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math></jats:alternatives></jats:inline-formula> (HAP) and <jats:inline-formula><jats:alternatives><jats:tex-math>{Ba}_{0.5}{Sr}_{0.5}{TiO}_{3}</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Ba</mml:mi><mml:mrow><mml:mn>0.5</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mi>Sr</mml:mi><mml:mrow><mml:mn>0.5</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mi>TiO</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:mrow></mml:math></jats:alternatives></jats:inline-formula> (BST) for biomedical applications. The study is a systematic blend of the materials science aspect of composites with a special focus on the dielectric and biological properties and their relationships. The article emphasized primarily extracting the dielectric constant (<jats:inline-formula><jats:alternatives><jats:tex-math> _r)</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>ϵ</mml:mi><mml:mi>r</mml:mi></mml:msub><mml:mrow><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math></jats:alternatives></jats:inline-formula> of the specimens (that lay in the range of 3–65) and related them to microstructural properties like the grain size and at.% of BST. A broad outlook on the importance of <jats:inline-formula><jats:alternatives><jats:tex-math> _r</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>ϵ</mml:mi><mml:mi>r</mml:mi></mml:msub></mml:math></jats:alternatives></jats:inline-formula> in determining the suitability of bioceramics for clinical applications is presented. Bioactivity analysis of the specimens led to probing the surface charges (that were negative), and it was found crucial to the growth of dense apatite layers. Furthermore, the cytocompatibility of the specimens displayed cell viability above 100% for Day 1, which increased substantially for Day 3. To reveal other biological properties of the composites, protein adsorption studies using bovine serum albumin (BSA) and fetal bovine serum (FBS) was carried out. Electrostatic interactions govern the adsorption, and the mathematical dependence on surface charges is linear. The protein adsorption is also linearly correlated with the <jats:inline-formula><jats:alternatives><jats:tex-math> _r</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>ϵ</mml:mi><mml:mi>r</mml:mi></mml:msub></mml:math></jats:alternatives></jats:inline-formula>, intrinsic to the biomaterials. We delve deeper into protein–biomaterials interactions by considering the evolution of the secondary structure of BSp_A adsorbed into the specimens. Based on the investigations, 20 at.% HAP–80 at.% BST (20H–80B) was established as a suitable composite comprising the desired features of HAP and BST. Such explorations of