Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Perry, Sam

  • Google
  • 1
  • 9
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 20202D single crystal Bragg-dip mapping by time-of-flight energy-resolved neutron imaging on IMAT@ISIS9citations

Places of action

Chart of shared publication
Strickland, Joel
1 / 6 shared
Kelleher, Joe
1 / 9 shared
Irwin, Steve
1 / 1 shared
Dong, Hongbiao
1 / 13 shared
Li, Jun
1 / 19 shared
Sheppard, Gareth
1 / 2 shared
Tassenberg, Karl
1 / 3 shared
Burca, Genoveva
1 / 1 shared
Nenchev, Bogdan
1 / 3 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Strickland, Joel
  • Kelleher, Joe
  • Irwin, Steve
  • Dong, Hongbiao
  • Li, Jun
  • Sheppard, Gareth
  • Tassenberg, Karl
  • Burca, Genoveva
  • Nenchev, Bogdan
OrganizationsLocationPeople

article

2D single crystal Bragg-dip mapping by time-of-flight energy-resolved neutron imaging on IMAT@ISIS

  • Strickland, Joel
  • Kelleher, Joe
  • Irwin, Steve
  • Dong, Hongbiao
  • Li, Jun
  • Sheppard, Gareth
  • Tassenberg, Karl
  • Burca, Genoveva
  • Perry, Sam
  • Nenchev, Bogdan
Abstract

<jats:title>Abstract</jats:title><jats:p>The cold neutron imaging and diffraction instrument IMAT, at the second target station of the pulsed neutron and muon source ISIS, is used to investigate bulk mosaicity within as-cast single crystal CMSX-4 and CMSX-10 Ni-base superalloys. Within this study, neutron transmission spectrum is recorded by each pixel within the microchannel plate image detector. The movement of the lowest transmission wavelength within a specified Bragg-dip for each pixel is tracked. The resultant Bragg-dip shifting has enabled crystallographic orientation mapping of bulk single crystal specimens with good spatial resolution. The total acquisition time required to collect sufficient statistics for each test is ~ 3 h. In this work, the influence of a change in bulk solidification conditions on the variation in single crystal mosaicity was investigated. Misorientation of the (001) crystallographic plane has been visualised and a new spiral twisting solidification phenomena observed. This proof of concept work establishes time-of-flight energy-resolved neutron imaging as a fundamental characterisation tool for understanding and visualising mosaicity within metallic single crystals and provides the foundation for post-mortem deduction of the shape of the solid/liquid isotherm.</jats:p>

Topics
  • impedance spectroscopy
  • single crystal
  • solidification
  • superalloy