Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Valla, T.

  • Google
  • 1
  • 3
  • 24

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Valence band electronic structure of the van der Waals ferromagnetic insulators: VI3 and CrI324citations

Places of action

Chart of shared publication
Petrovic, Cedomir
1 / 10 shared
Kundu, Asish K.
1 / 6 shared
Liu, Yu
1 / 41 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Petrovic, Cedomir
  • Kundu, Asish K.
  • Liu, Yu
OrganizationsLocationPeople

article

Valence band electronic structure of the van der Waals ferromagnetic insulators: VI3 and CrI3

  • Valla, T.
  • Petrovic, Cedomir
  • Kundu, Asish K.
  • Liu, Yu
Abstract

<jats:title>Abstract</jats:title><jats:p>Ferromagnetic van der Waals (vdW) insulators are of great scientific interest for their promising applications in spintronics. It has been indicated that in the two materials within this class, CrI<jats:inline-formula><jats:alternatives><jats:tex-math>_3</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow /> <mml:mn>3</mml:mn> </mml:msub> </mml:math></jats:alternatives></jats:inline-formula> and VI<jats:inline-formula><jats:alternatives><jats:tex-math>_3</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow /> <mml:mn>3</mml:mn> </mml:msub> </mml:math></jats:alternatives></jats:inline-formula>, the magnetic ground state, the band gap, and the Fermi level could be manipulated by varying the layer thickness, strain or doping. To understand how these factors impact the properties, a detailed understanding of the electronic structure would be required. However, the experimental studies of the electronic structure of these materials are still very sparse. Here, we present the detailed electronic structure of CrI<jats:inline-formula><jats:alternatives><jats:tex-math>_3</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow /> <mml:mn>3</mml:mn> </mml:msub> </mml:math></jats:alternatives></jats:inline-formula> and VI<jats:inline-formula><jats:alternatives><jats:tex-math>_3</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow /> <mml:mn>3</mml:mn> </mml:msub> </mml:math></jats:alternatives></jats:inline-formula> measured by angle-resolved photoemission spectroscopy (ARPES). Our results show a band-gap of the order of 1 eV, sharply contrasting some theoretical predictions such as Dirac half-metallicity and metallic phases, indicating that the intra-atomic interaction parameter (U) and spin-orbit coupling (SOC) were not properly accounted for in the calculations. We also find significant differences in the electronic properties of these two materials, in spite of similarities in their crystal structure. In CrI<jats:inline-formula><jats:alternatives><jats:tex-math>_3</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow /> <mml:mn>3</mml:mn> </mml:msub> </mml:math></jats:alternatives></jats:inline-formula>, the valence band maximum is dominated by the I 5<jats:italic>p</jats:italic>, whereas in VI<jats:inline-formula><jats:alternatives><jats:tex-math>_3</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow /> <mml:mn>3</mml:mn> </mml:msub> </mml:math></jats:alternatives></jats:inline-formula> it is dominated by the V 3<jats:italic>d</jats:italic> derived states. Our results represent valuable input for further improvements in the theoretical modeling of these systems.</jats:p>

Topics
  • impedance spectroscopy
  • phase
  • angle-resolved photoelectron spectroscopy