Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Makinde-Isola, B. A.

  • Google
  • 1
  • 5
  • 28

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Influence of designated properties on the characteristics of dombeya buettneri fiber/graphite hybrid reinforced polypropylene composites28citations

Places of action

Chart of shared publication
Oladele, I. O.
1 / 2 shared
Akinlabi, Esther Titilayo
1 / 235 shared
Owa, A. F.
1 / 2 shared
Oladejo, M. O.
1 / 1 shared
Adediran, A. A.
1 / 6 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Oladele, I. O.
  • Akinlabi, Esther Titilayo
  • Owa, A. F.
  • Oladejo, M. O.
  • Adediran, A. A.
OrganizationsLocationPeople

article

Influence of designated properties on the characteristics of dombeya buettneri fiber/graphite hybrid reinforced polypropylene composites

  • Oladele, I. O.
  • Akinlabi, Esther Titilayo
  • Owa, A. F.
  • Makinde-Isola, B. A.
  • Oladejo, M. O.
  • Adediran, A. A.
Abstract

<p>This research presents the behavior of dombeya buettneri fiber/graphite hybrid composites which was studied to harness a favorable balance between the inherent advantages and disadvantages of natural and synthetic reinforcements. The fibers after extraction were chemically treated for surface modification. The composite was developed using compression molding process by randomly dispersing the reinforcements in the polypropylene matrix in predetermined proportions. The developed samples were tested to ascertain the response of the materials to the selected properties. Experimental results showed that hybrid composite sample C which is a blend of 12 wt% dombeya buettneri fiber (DBF) and 8 wt% graphite particle (GP) gave enhanced results in many of the properties which includes; hardness, impact, thermal insulation and abrasion resistance properties. Also, the hybrid composites sample denoted as sample E which is the blend of 6 wt% DBF and 14 wt% GP produce higher enhancement in the flexural properties and Young’s Modulus of Elasticity than other samples. Composite sample reinforced with dombeya buettneri fiber as single reinforced composites performed more in ultimate tensile strength compared to other samples while graphite particle reinforced sample emerges as the best in thermal conductivity. Diffusion of water into the composites also obeys Fick’s law where sample C was seen to be the best among the composites. It was therefore, discovered that the synergy between the two reinforcements has encouraged the improvement of polypropylene (PP) properties in a unique mode.</p>

Topics
  • impedance spectroscopy
  • surface
  • extraction
  • strength
  • composite
  • hardness
  • elasticity
  • tensile strength
  • thermal conductivity
  • compression molding