Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Yoo, G. H.

  • Google
  • 1
  • 6
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020High Pressure Quenched Glasses: unique structures and properties10citations

Places of action

Chart of shared publication
Stelmakh, S.
1 / 2 shared
Egami, T.
1 / 6 shared
Gierlotka, S.
1 / 14 shared
Park, E. S.
1 / 6 shared
Yokoyama, Y.
1 / 19 shared
Dmowski, W.
1 / 5 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Stelmakh, S.
  • Egami, T.
  • Gierlotka, S.
  • Park, E. S.
  • Yokoyama, Y.
  • Dmowski, W.
OrganizationsLocationPeople

article

High Pressure Quenched Glasses: unique structures and properties

  • Stelmakh, S.
  • Yoo, G. H.
  • Egami, T.
  • Gierlotka, S.
  • Park, E. S.
  • Yokoyama, Y.
  • Dmowski, W.
Abstract

<jats:title>Abstract</jats:title><jats:p>Zr-based metallic glasses are prepared by quenching supercooled liquid under pressure. These glasses are stable in ambient conditions after decompression. The High Pressure Quenched glasses have a distinct structure and properties. The pair distribution function shows redistribution of the Zr-Zr interatomic distances and their shift towards smaller values. These glasses exhibit higher density, hardness, elastic modulus, and yield stress. Upon heating at ambient pressure, they show volume expansion and distinct relaxation behavior, reaching an equilibrated state above the glass transition. These experimental results are consistent with an idea of pressure-induced low to high density liquid transition in the supercooled melt.</jats:p>

Topics
  • density
  • melt
  • glass
  • glass
  • hardness
  • quenching