Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bedran-Russo, Ana Karina

  • Google
  • 1
  • 8
  • 29

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Effect of a new irrigant solution containing glycolic acid on smear layer removal and chemical/mechanical properties of dentin29citations

Places of action

Chart of shared publication
Barcellos, Débora Pereira Diniz Correia
1 / 1 shared
Cecchin, Doglas
1 / 3 shared
Farina, Ana Paula
1 / 4 shared
Bello, Yuri Dal
1 / 1 shared
Borba, Márcia
1 / 20 shared
Souza, Matheus Albino
1 / 1 shared
Barcellos, Ramiro
1 / 1 shared
Vidal, Cristina De Mattos Pimenta
1 / 2 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Barcellos, Débora Pereira Diniz Correia
  • Cecchin, Doglas
  • Farina, Ana Paula
  • Bello, Yuri Dal
  • Borba, Márcia
  • Souza, Matheus Albino
  • Barcellos, Ramiro
  • Vidal, Cristina De Mattos Pimenta
OrganizationsLocationPeople

article

Effect of a new irrigant solution containing glycolic acid on smear layer removal and chemical/mechanical properties of dentin

  • Barcellos, Débora Pereira Diniz Correia
  • Cecchin, Doglas
  • Farina, Ana Paula
  • Bello, Yuri Dal
  • Borba, Márcia
  • Souza, Matheus Albino
  • Barcellos, Ramiro
  • Vidal, Cristina De Mattos Pimenta
  • Bedran-Russo, Ana Karina
Abstract

<p>The objective of this study was to evaluate the effects of glycolic acid (GA) (with pH 1.2 and 5) and ethylenediaminetetraacetic acid (EDTA) on the chemical and mechanical properties of dentin to investigate the potential use of GA as final irrigant in the root canal therapy. Specifically, changes in microhardness, smear layer removal, erosion, mineral content distribution, apatite/collagen ratio and flexural strength of mineralized dentin treated with GA were assessed. Saline solution was used as a negative control. Knoop microhardness (KHN) was measured on the root canal lumen of root segments. Dentin beams were used for 3-point flexural strength (σ) test. Scanning electron microscopy (SEM) images of root sections were obtained for evaluation of smear layer removal and dentin erosion on root segments and energy dispersive X-ray spectroscopy (EDS) was used for mineral content distribution. The apatite/collagen ratio (A/C) in dentin powder were examined by Fourier transform infrared (FTIR) spectroscopy. KHN, σ and A/C results were statistically analyzed with ANOVA and Tukey tests (α = 0.05). Smear layer and dentin erosion scores were analyzed with Kruskal-Wallis and Dunn tests (α = 0.05). Root dentin treated with EDTA and GA presented similar KHN regardless of the pH (p &gt; 0.05). However, KHN was significantly reduced in EDTA and GA groups when compared to control group (p&lt;0.001). GA showed the same ability to remove the smear layer and to cause dentin erosion as EDTA. EDS results showed that the GA and EDTA solutions did not alter the dentin mineral content distribution. The apatite/collagen ratio reduced with all irrigant solution and was the lowest with GA pH 5 (p&lt;0.001), while σ was not significantly affected by the experimental solutions (p = 0.559). It can be concluded that GA has similar ability to remove the smear layer than EDTA. GA does not affect negatively the chemical/mechanical properties and it does not increase dentin erosion. The use of GA with low pH seems to promote less change in collagen/apatite ratio, but further studies are needed to establish an ideal clinical protocol. Therefore, this study supports the potential use of GA as an alternative final irrigation solution for root canal preparation.</p>

Topics
  • mineral
  • scanning electron microscopy
  • laser emission spectroscopy
  • strength
  • flexural strength
  • Energy-dispersive X-ray spectroscopy