Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Park, Hyun Sik

  • Google
  • 1
  • 4
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Improving the production efficiency of high-titania slag in Ti extraction process: fluxing effect on formation of pseudobrookite12citations

Places of action

Chart of shared publication
Heo, Jung Ho
1 / 1 shared
Kim, Jin Kyung
1 / 1 shared
Kim, Dong Hyeon
1 / 3 shared
Park, Joohyun
1 / 1 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Heo, Jung Ho
  • Kim, Jin Kyung
  • Kim, Dong Hyeon
  • Park, Joohyun
OrganizationsLocationPeople

article

Improving the production efficiency of high-titania slag in Ti extraction process: fluxing effect on formation of pseudobrookite

  • Heo, Jung Ho
  • Park, Hyun Sik
  • Kim, Jin Kyung
  • Kim, Dong Hyeon
  • Park, Joohyun
Abstract

<jats:title>Abstract</jats:title><jats:p>We investigated the carbothermic reduction process of ilmenite ore at 1873 K with flux addition. Without flux, the pseudobrookite phase with a high melting temperature was precipitated during ilmenite smelting. This could be the main reason for decreased reduction of iron in ilmenite. To accelerate reduction of ilmenite, two factors were considered. One is increasing the reduction driving force during smelting. Activity of FeO is the major factor to control reduction in driving force. The other factor is delay in formation of the pseudobrookite phase, a high-melting point precipitation phase. In this system, MgO in ilmenite could be used to form pseudobrookite. To control these factors, in this study, flux agent (i.e., Na<jats:sub>2</jats:sub>O or SiO<jats:sub>2</jats:sub>) addition was considered. The thermochemical simulation program, FactSage<jats:sup>TM</jats:sup>7.0 was used to calculate the viscosity of slag and the activity of components as fluxing agents were added. High-temperature experiments using an induction furnace were also conducted to confirm the computational results. To determine the composition of final products, i.e., titanium slag, X-ray fluorescence analysis was executed. As a result of Fe and Ti behaviours in slag, SiO<jats:sub>2</jats:sub> addition showed no significant difference from the slag without flux. However, Fe reduction in ilmenite, i.e. TiO<jats:sub>2</jats:sub>-enrichment, was more accelerated when Na<jats:sub>2</jats:sub>O was added. X-ray diffraction, scanning electron microscopic and transmission electron microscopic analyses results also showed that even 1 wt% Na<jats:sub>2</jats:sub>O addition significantly influenced the titanium slag production compared to no flux addition.</jats:p>

Topics
  • impedance spectroscopy
  • phase
  • x-ray diffraction
  • experiment
  • simulation
  • extraction
  • viscosity
  • precipitation
  • titanium
  • iron
  • melting temperature