Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Yadav, Sarita

  • Google
  • 1
  • 6
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Carrier Induced Hopping to Band Conduction in Pentacene13citations

Places of action

Chart of shared publication
Sharma, Akanksha
1 / 3 shared
Ray, Nirat
1 / 1 shared
Singh, Budhi
1 / 1 shared
Kumar, Pramod
1 / 8 shared
Ghosh, Subhasis
1 / 2 shared
Rani, Varsha
1 / 2 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Sharma, Akanksha
  • Ray, Nirat
  • Singh, Budhi
  • Kumar, Pramod
  • Ghosh, Subhasis
  • Rani, Varsha
OrganizationsLocationPeople

article

Carrier Induced Hopping to Band Conduction in Pentacene

  • Sharma, Akanksha
  • Yadav, Sarita
  • Ray, Nirat
  • Singh, Budhi
  • Kumar, Pramod
  • Ghosh, Subhasis
  • Rani, Varsha
Abstract

<jats:title>Abstract</jats:title><jats:p>Charge transport in organic thin films which are generally polycrystalline is typically limited by the localization of the carriers at lattice defects resulting in low carrier mobilities and carriers move from one state to another state by hopping. However, charge transport in organic semiconductors in their single crystalline phase is coherent due to band conduction and mobilities are not limited by disorder resulting in higher carrier mobility. So it is a challenge to enhance the carrier mobility in a thin film which is the preferred choice for all organic devices. Here, we show that it is possible to increase the carrier mobility in polycrystalline thin films by injecting sufficient carriers such that Fermi level can be moved into the region of high density in Gaussian density of states of molecular solids. When the hopping transport happens through the molecular energy levels whose density is low, mobility is decided by incoherent transport however, when the the hopping transport happens through the energy levels with high density, mobility is decided by coherent transport, as in band conduction. We present results highlighting the observation of both band-like and hopping conduction in polycrystalline organic thin films by varying the concentration of injected charge. More importantly the transition from hopping to band transport is reversible. The observed carrier mobilities in both the regimes match well with theoretical estimates of hopping mobility and band mobility determined from first principles density functional theory.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • mobility
  • theory
  • thin film
  • crystalline phase
  • semiconductor
  • defect
  • density functional theory