Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sautou, V.

  • Google
  • 1
  • 6
  • 24

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Impact of alternative materials to plasticized PVC infusion tubings on drug sorption and plasticizer release24citations

Places of action

Chart of shared publication
Bernard, L.
1 / 2 shared
Tokhadze, N.
1 / 1 shared
Chennell, P.
1 / 1 shared
Pereira, B.
1 / 1 shared
Mailhot-Jensen, Benedicte
1 / 1 shared
Lambert, Christophe
1 / 2 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Bernard, L.
  • Tokhadze, N.
  • Chennell, P.
  • Pereira, B.
  • Mailhot-Jensen, Benedicte
  • Lambert, Christophe
OrganizationsLocationPeople

article

Impact of alternative materials to plasticized PVC infusion tubings on drug sorption and plasticizer release

  • Bernard, L.
  • Tokhadze, N.
  • Chennell, P.
  • Sautou, V.
  • Pereira, B.
  • Mailhot-Jensen, Benedicte
  • Lambert, Christophe
Abstract

Medical tubings in plasticized polyvinylchloride (PVC) are widely used for the infusion of medications but are known in some cases to cause content-container interactions (drug sorption and plasticizer release). The aim of this study was to assess interactions between drugs and five alternative materials to a reference plasticized PVC intravenous (IV) infusion tubing: three were PVC coextruded with polyethylene (PE), polyurethane (PU) or a thermoplastic elastomer (Styrene-EthyleneButadiene-Styrene (SEBS)) and two were SEBS or thermoplastic olefin (TPO) monolayer tubings. Diazepam and insulin were chosen as respective reference of absorption and adsorption while paracetamol acted as a negative control. The concentration of each drug was quantified with liquid chromatography to evaluate a potential loss after a static contact condition and simulated infusion at 1 mL/h and 10 mL/h dynamic condition by an electric syringe pump. A characterization of each material’s surface was performed by Fourier transform infrared spectroscopy in attenuated total reflection mode (ATR-FTIR) and by measurement of surface zeta potential. Plasticizer release was quantified by gas chromatography coupled with mass spectrometry (GC-MS). For all tubings except PVC/PU, no loss of paracetamol was observed in any condition. Diazepam sorption appeared to be less important with PVC/PE, PVC/SEBS, SEBS and TPO tubings than with PVC, but was more important when using PVC/PU tubings. PVC tubings induced the least loss of insulin amongst all the studied materials. Surface analysis by ATR-FTIR highlighted the presence of a plasticizer (that could be attributed to Tris (2-Ethylhexyl) Trimellitate (TOTM)) in the coextruded SEBS layer of PVC/SEBS, which could have influenced drug sorption, probably as a consequence of a migration from the PVC layer. Coextruded PVC/SEBS and PVC/PE presented the lowest zeta potential of all studied materials with respective values of −39 mV and −36 mV and were related to the highest sorption of insulin while PVC/PU with the highest zeta potential (about −9 mV) presented the highest absorption of diazepam. Coextruded layered materials appeared to have a lower plasticizer release than PVC alone. As a conclusion, PVC/PE and thermoplastic elastomers alone or coextruded with PVC could be interesting alternatives to PVC tubings with regards to sorption phenomena and plasticizer release.

Topics
  • surface
  • laser emission spectroscopy
  • layered
  • thermoplastic
  • gas chromatography
  • Fourier transform infrared spectroscopy
  • spectrometry
  • elastomer
  • liquid chromatography
  • gas chromatography-mass spectrometry
  • thermoplastic elastomer
  • temperature-programmed oxidation