Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Baranowski, Piotr

  • Google
  • 2
  • 15
  • 21

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2019Multifold pressure-induced increase of electric conductivity in LiFe<inf>0.75</inf>V<inf>0.10</inf>PO<inf>4</inf> glass12citations
  • 2008Carbon-encapsulated magnetic nanoparticles spontaneously formed by thermolysis route9citations

Places of action

Chart of shared publication
Bockowski, Michał
1 / 2 shared
Starzonek, S.
1 / 5 shared
Drozd-Rzoska, Aleksandra
1 / 3 shared
Rzoska, S. J.
1 / 6 shared
Keblinski, Pawel
1 / 2 shared
Garbarczyk, Jerzy
1 / 29 shared
Pietrzak, Tomasz
1 / 11 shared
Kaszuwara, Waldemar
1 / 65 shared
Huczko, A.
1 / 7 shared
Rummeli, M. H.
1 / 6 shared
Gemming, T.
1 / 91 shared
Lange, H.
1 / 10 shared
Kowalska, E.
1 / 1 shared
Bystrzejewski, Michał
1 / 7 shared
Cudziło, Stanisław
1 / 3 shared
Chart of publication period
2019
2008

Co-Authors (by relevance)

  • Bockowski, Michał
  • Starzonek, S.
  • Drozd-Rzoska, Aleksandra
  • Rzoska, S. J.
  • Keblinski, Pawel
  • Garbarczyk, Jerzy
  • Pietrzak, Tomasz
  • Kaszuwara, Waldemar
  • Huczko, A.
  • Rummeli, M. H.
  • Gemming, T.
  • Lange, H.
  • Kowalska, E.
  • Bystrzejewski, Michał
  • Cudziło, Stanisław
OrganizationsLocationPeople

article

Multifold pressure-induced increase of electric conductivity in LiFe<inf>0.75</inf>V<inf>0.10</inf>PO<inf>4</inf> glass

  • Bockowski, Michał
  • Starzonek, S.
  • Drozd-Rzoska, Aleksandra
  • Baranowski, Piotr
  • Rzoska, S. J.
  • Keblinski, Pawel
  • Garbarczyk, Jerzy
  • Pietrzak, Tomasz
Abstract

We investigated the impact of high pressure and high-temperature annealing on lithium-vanadium-iron-phosphate (LiFe<sub>0.75</sub>V<sub>0.10</sub>PO<sub>4</sub>) glass materials, proposed for the use in cathodes for high-performance batteries. The treatment was carried out below the glass transition temperature (T<sub>g</sub> ≈ 483 °C) at P = 1 GPa pressure, in an argon atmosphere. It led to the multifold electrical conductivity increase. Broadband dielectric spectroscopy (BDS) measurements before and after the process revealed the strong DC-conductivity increase across the whole studied frequency range by two orders of magnitude. The phenomenon is explained using Mott’s theory of polaron hopping in disordered solids containing transition metal oxides. The pressure evolution of the glass transition temperature and the crystallisation temperature above T<sub>g</sub> is shown.

Topics
  • impedance spectroscopy
  • theory
  • glass
  • glass
  • glass transition temperature
  • Lithium
  • iron
  • annealing
  • electrical conductivity
  • vanadium