Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jannesar, M.

  • Google
  • 1
  • 1
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019A Langevin equation that governs the irregular stick-slip nano-scale friction6citations

Places of action

Chart of shared publication
Meyer, E.
1 / 8 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Meyer, E.
OrganizationsLocationPeople

article

A Langevin equation that governs the irregular stick-slip nano-scale friction

  • Meyer, E.
  • Jannesar, M.
Abstract

<jats:title>Abstract</jats:title><jats:p>Friction force at the nanoscale, as measured from the lateral deflection of the tip of an atomic force microscope, usually shows a regular stick-slip behavior superimposed by a stochastic part (fluctuations). Previous studies showed the overall fluctuations to be correlated and multi-fractal, and thus not describable simply by e.g. a white noise. In the present study, we investigate whether one can extract an equation to describe nano-friction fluctuations directly from experimental data. Analysing the raw data acquired by a silicon tip scanning the NaCl(001) surface (of lattice constant 5.6 Å) at room temperature and in ultra-high vacuum, we found that the fluctuations possess a Markovian behavior for length scales greater than 0.7 Å. Above this characteristic length, the Kramers-Moyal approach applies. However, the fourth-order KM coefficient turns out to be negligible compared to the second order coefficients, such that the KM expansion reduces to the Langevin equation. The drift and diffusion terms of the Langevin equation show linear and quadratic trends with respect to the fluctuations, respectively. The slope 0.61 ± 0.02 of the drift term, being identical to the Hurst exponent, expresses a degree of correlation among the fluctuations. Moreover, the quadratic trend in the diffusion term causes the scaling exponents to become nonlinear, which indicates multifractality in the fluctuations. These findings propose the practical way to correct the prior models that consider the fluctuations as a white noise.</jats:p>

Topics
  • surface
  • Silicon