People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Larrson, Emanuel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Hierarchical supercrystalline nanocomposites through the self-assembly of organically-modified ceramic nanoparticles
Abstract
Biomaterials often display outstanding combinations of mechanical properties thanks to their hierarchical structuring, which occurs through a dynamically and biologically controlled growth and self-assembly of their main constituents, typically mineral and protein. However, it is still challenging to obtain this ordered multiscale structural organization in synthetic 3D-nanocomposite materials. Herein, we report a new bottom-up approach for the synthesis of macroscale hierarchical nanocomposite materials in a single step. By controlling the content of organic phase during the self-assembly of monodisperse organically-modified nanoparticles (iron oxide with oleyl phosphate), either purely supercrystalline or hierarchically structured supercrystalline nanocomposite materials are obtained. Beyond a critical concentration of organic phase, a hierarchical material is consistently formed. In such a hierarchical material, individual organically-modified ceramic nanoparticles (Level 0) self-assemble into supercrystals in face-centered cubic superlattices (Level 1), which in turn form granules of up to hundreds of micrometers (Level 2). These micrometric granules are the constituents of the final mm-sized material. This approach demonstrates that the local concentration of organic phase and nano-building blocks during self-assembly controls the final material’s microstructure, and thus enables the fine-tuning of inorganic-organic nanocomposites’ mechanical behavior, paving the way towards the design of novel high-performance structural materials.