Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Campaña, Orlando

  • Google
  • 1
  • 10
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019An Archaeometric Characterization of Ecuadorian Pottery6citations

Places of action

Chart of shared publication
Serrano, Jorge
1 / 3 shared
Briceño, Sarah
1 / 1 shared
Debut, Alexis
1 / 5 shared
Galeas, Salomé
1 / 1 shared
Jamett, Alex
1 / 1 shared
Sánchez Polo, Alejandra
1 / 1 shared
Zamora-Ledezma, Camilo
1 / 12 shared
Guerrero, Víctor
1 / 1 shared
Mowbray, Duncan J.
1 / 3 shared
Arroyo, Carlos R.
1 / 2 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Serrano, Jorge
  • Briceño, Sarah
  • Debut, Alexis
  • Galeas, Salomé
  • Jamett, Alex
  • Sánchez Polo, Alejandra
  • Zamora-Ledezma, Camilo
  • Guerrero, Víctor
  • Mowbray, Duncan J.
  • Arroyo, Carlos R.
OrganizationsLocationPeople

article

An Archaeometric Characterization of Ecuadorian Pottery

  • Serrano, Jorge
  • Briceño, Sarah
  • Debut, Alexis
  • Galeas, Salomé
  • Jamett, Alex
  • Sánchez Polo, Alejandra
  • Zamora-Ledezma, Camilo
  • Guerrero, Víctor
  • Mowbray, Duncan J.
  • Campaña, Orlando
  • Arroyo, Carlos R.
Abstract

<jats:title>Abstract</jats:title><jats:p>Ecuadorian pottery is renowned for its beauty and the particularly rich colour of its pigments. However, a major challenge for art historians is the proper assessment of the provenance of individual pieces due to their lack of archaeological context. Of particular interest is the Jama-Coaque culture, which produced fascinating anthropomorphic and zoomorphic pottery from ca. 240 B.C. until the Spanish Conquest of 1532 A.D. in the coastal region of Ecuador. Using a combination of microscopic and spectroscopic techniques, i.e., transmission electron microscopy (TEM), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), energy-dispersive x-ray spectroscopy (EDX), and scanning electron microscopy (SEM); we are able to characterize these pieces. We have found several kinds of iron-oxide based nanostructures in all the colour pigments we investigated for the Jama-Coaque culture, suggesting the same unique volcanic source material was used for their clay. Such nanostructures were absent from the pigment samples studied from other contemporary coastal-Ecuadorian cultures, i.e., the Tumaco-La Tolita and Bahía cultures. In the yellow pigments of goethite we find carbon nanofibres, indicating these pigments were subjected to a thermal treatment. Finally, in the blue, green, and black pigments we detect modern pigments (phthalocyanine blue, lithopone, and titanium white), suggesting modern restoration. Our results demonstrate the power of TEM, Raman, FTIR, EDX, and SEM archaeometric techniques for characterizing pieces without a clear archaeological context. Furthermore, the characterization of nanostructures present in such pieces could be used as a possible fingerprint for a provenance study.</jats:p>

Topics
  • impedance spectroscopy
  • Carbon
  • scanning electron microscopy
  • transmission electron microscopy
  • titanium
  • iron
  • Energy-dispersive X-ray spectroscopy
  • Raman spectroscopy
  • Fourier transform infrared spectroscopy