Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Morita, Hidekazu

  • Google
  • 1
  • 6
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Accelerating small-angle scattering experiments on anisotropic samples using kernel density estimation17citations

Places of action

Chart of shared publication
Kohlbrecher, Joachim
1 / 12 shared
Hino, Hideitsu
1 / 1 shared
Saito, Kotaro
1 / 2 shared
Shoji, Tetsuya
1 / 6 shared
Asahara, Akinori
1 / 1 shared
Yano, Masao
1 / 8 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Kohlbrecher, Joachim
  • Hino, Hideitsu
  • Saito, Kotaro
  • Shoji, Tetsuya
  • Asahara, Akinori
  • Yano, Masao
OrganizationsLocationPeople

article

Accelerating small-angle scattering experiments on anisotropic samples using kernel density estimation

  • Kohlbrecher, Joachim
  • Hino, Hideitsu
  • Saito, Kotaro
  • Shoji, Tetsuya
  • Asahara, Akinori
  • Morita, Hidekazu
  • Yano, Masao
Abstract

<jats:title>Abstract</jats:title><jats:p>We propose a method to accelerate small-angle scattering experiments by exploiting spatial correlation in two-dimensional data. We applied kernel density estimation to the average of a hundred short scans and evaluated noise reduction effects of kernel density estimation (smoothing). Although there is no advantage of using smoothing for isotropic data due to the powerful noise reduction effect of radial averaging, smoothing with a statistically and physically appropriate kernel can shorten measurement time by less than half to obtain sector averages with comparable statistical quality to that of sector averages without smoothing. This benefit will encourage researchers not to use full radial average on anisotropic data sacrificing anisotropy for statistical quality. We also confirmed that statistically reasonable estimation of measurement time is feasible on site by evaluating how intensity variances improve with accumulating counts. The noise reduction effect of smoothing will bring benefits to a wide range of applications from efficient use of beamtime at laboratories and large experimental facilities to stroboscopic measurements suffering low statistical quality.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • experiment
  • laser emission spectroscopy
  • anisotropic
  • two-dimensional
  • isotropic