People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Loones, Nicolas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Highly efficient MoOx-free semitransparent perovskite cell for 4 T tandem application improving the efficiency of commercially-available Al-BSF silicon
Abstract
<jats:title>Abstract</jats:title><jats:p>In this work, the fabrication of MoO<jats:sub>x</jats:sub>-free semitransparent perovskite solar cells (PSC) with Power Conversion Efficiencies (PCE) up to 15.7% is reported. Firstly, opaque PSCs up to 19.7% were fabricated. Then, the rear metal contact was replaced by a highly transparent and conductive indium tin oxide (ITO) film, directly sputtered onto the hole selective layer, without any protective layer between Spiro-OMeTAD and rear ITO. To the best of our knowledge, this corresponds to the most efficient buffer layer-free semitransparent PSC ever reported. Using time-resolved photoluminescence (TRPL) technique on both sides of the semitransparent PSC, Spiro-OMeTAD/perovskite and perovskite/TiO<jats:sub>2</jats:sub> interfaces were compared, confirming the great quality of Spiro-OMeTAD/perovskite interface, even after damage-less ITO sputtering, where degradation phenomena result less important than for perovskite/TiO<jats:sub>2</jats:sub> one. Finally, a 4-terminal tandem was built combining semitransparent PSC with a commercially-available Aluminium Back Surface Field (Al-BSF) silicon wafer. That silicon wafer presents PCE = 19.52% (18.53% after being reduced to cell size), and 5.75% once filtered, to generate an overall 4 T tandem efficiency of 21.18% in combination with our champion large semitransparent PSC of 15.43%. It means an absolute increase of 1.66% over the original silicon wafer efficiency and a 2.65% over the cut Si cell.</jats:p>