Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Yanagisawa, Y.

  • Google
  • 1
  • 5
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Quantum conductance-temperature phase diagram of granular superconductor K x Fe2−ySe24citations

Places of action

Chart of shared publication
Takeya, H.
1 / 2 shared
Tanaka, M.
1 / 18 shared
Soares, C. C.
1 / 1 shared
Elmassalami, M.
1 / 1 shared
Takano, Y.
1 / 7 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Takeya, H.
  • Tanaka, M.
  • Soares, C. C.
  • Elmassalami, M.
  • Takano, Y.
OrganizationsLocationPeople

article

Quantum conductance-temperature phase diagram of granular superconductor K x Fe2−ySe2

  • Takeya, H.
  • Tanaka, M.
  • Soares, C. C.
  • Elmassalami, M.
  • Yanagisawa, Y.
  • Takano, Y.
Abstract

<jats:title>Abstract</jats:title><jats:p>It is now well established that the microstructure of Fe-based chalcogenide K<jats:sub><jats:italic>x</jats:italic></jats:sub>Fe<jats:sub>2−<jats:italic>y</jats:italic></jats:sub>Se<jats:sub>2</jats:sub> consists of, at least, a minor (~15 percent), nano-sized, superconducting K<jats:sub><jats:italic>s</jats:italic></jats:sub>Fe<jats:sub>2</jats:sub>Se<jats:sub>2</jats:sub> phase and a major (~85 percent) insulating antiferromagnetic K<jats:sub>2</jats:sub>Fe<jats:sub>4</jats:sub>Se<jats:sub>5</jats:sub> matrix. Other intercalated <jats:italic>A</jats:italic><jats:sub>1−<jats:italic>x</jats:italic></jats:sub>Fe<jats:sub>2−<jats:italic>y</jats:italic></jats:sub>Se<jats:sub>2</jats:sub> (<jats:italic>A</jats:italic> = Li, Na, Ba, Sr, Ca, Yb, Eu, ammonia, amide, pyridine, ethylenediamine etc.) manifest a similar microstructure. On subjecting each of these systems to a varying control parameter (e.g. heat treatment, concentration <jats:italic>x</jats:italic>,<jats:italic>y</jats:italic>, or pressure <jats:italic>p</jats:italic>), one obtains an exotic normal-state and superconducting phase diagram. With the objective of rationalizing the properties of such a diagram, we envisage a system consisting of nanosized superconducting granules which are embedded within an insulating continuum. Then, based on the standard granular superconductor model, an induced variation in size, distribution, separation and Fe-content of the superconducting granules can be expressed in terms of model parameters (e.g. tunneling conductance, <jats:italic>g</jats:italic>, Coulomb charging energy, <jats:italic>E</jats:italic><jats:sub><jats:italic>c</jats:italic></jats:sub>, superconducting gap of single granule, Δ, and Josephson energy <jats:italic>J</jats:italic> = <jats:italic>π</jats:italic>Δ<jats:italic>g</jats:italic>/2). We show, with illustration from experiments, that this granular scenario explains satisfactorily the evolution of normal-state and superconducting properties (best visualized on a <jats:inline-formula><jats:alternatives><jats:tex-math>{{g}}{{-}}{{{{E}}}_{{{c}}}}{{}}{{-}}{{T}}</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>g</mml:mi><mml:mo>−</mml:mo><mml:mfrac><mml:mrow><mml:msub><mml:mrow><mml:mi>E</mml:mi></mml:mrow><mml:mrow><mml:mi>c</mml:mi></mml:mrow></mml:msub></mml:mrow><mml:mi>Δ</mml:mi></mml:mfrac><mml:mo>−</mml:mo><mml:mi>T</mml:mi></mml:math></jats:alternatives></jats:inline-formula> phase diagram) of <jats:italic>A</jats:italic><jats:sub><jats:italic>x</jats:italic></jats:sub>Fe<jats:sub>2−<jats:italic>y</jats:italic></jats:sub>Se<jats:sub>2</jats:sub> when any of <jats:italic>x</jats:italic>, <jats:italic>y</jats:italic>, <jats:italic>p</jats:italic>, or heat treatment is varied.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • phase
  • experiment
  • phase diagram