People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Yanagisawa, Y.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Quantum conductance-temperature phase diagram of granular superconductor K x Fe2−ySe2
Abstract
<jats:title>Abstract</jats:title><jats:p>It is now well established that the microstructure of Fe-based chalcogenide K<jats:sub><jats:italic>x</jats:italic></jats:sub>Fe<jats:sub>2−<jats:italic>y</jats:italic></jats:sub>Se<jats:sub>2</jats:sub> consists of, at least, a minor (~15 percent), nano-sized, superconducting K<jats:sub><jats:italic>s</jats:italic></jats:sub>Fe<jats:sub>2</jats:sub>Se<jats:sub>2</jats:sub> phase and a major (~85 percent) insulating antiferromagnetic K<jats:sub>2</jats:sub>Fe<jats:sub>4</jats:sub>Se<jats:sub>5</jats:sub> matrix. Other intercalated <jats:italic>A</jats:italic><jats:sub>1−<jats:italic>x</jats:italic></jats:sub>Fe<jats:sub>2−<jats:italic>y</jats:italic></jats:sub>Se<jats:sub>2</jats:sub> (<jats:italic>A</jats:italic> = Li, Na, Ba, Sr, Ca, Yb, Eu, ammonia, amide, pyridine, ethylenediamine etc.) manifest a similar microstructure. On subjecting each of these systems to a varying control parameter (e.g. heat treatment, concentration <jats:italic>x</jats:italic>,<jats:italic>y</jats:italic>, or pressure <jats:italic>p</jats:italic>), one obtains an exotic normal-state and superconducting phase diagram. With the objective of rationalizing the properties of such a diagram, we envisage a system consisting of nanosized superconducting granules which are embedded within an insulating continuum. Then, based on the standard granular superconductor model, an induced variation in size, distribution, separation and Fe-content of the superconducting granules can be expressed in terms of model parameters (e.g. tunneling conductance, <jats:italic>g</jats:italic>, Coulomb charging energy, <jats:italic>E</jats:italic><jats:sub><jats:italic>c</jats:italic></jats:sub>, superconducting gap of single granule, Δ, and Josephson energy <jats:italic>J</jats:italic> = <jats:italic>π</jats:italic>Δ<jats:italic>g</jats:italic>/2). We show, with illustration from experiments, that this granular scenario explains satisfactorily the evolution of normal-state and superconducting properties (best visualized on a <jats:inline-formula><jats:alternatives><jats:tex-math>{{g}}{{-}}{{{{E}}}_{{{c}}}}{{}}{{-}}{{T}}</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>g</mml:mi><mml:mo>−</mml:mo><mml:mfrac><mml:mrow><mml:msub><mml:mrow><mml:mi>E</mml:mi></mml:mrow><mml:mrow><mml:mi>c</mml:mi></mml:mrow></mml:msub></mml:mrow><mml:mi>Δ</mml:mi></mml:mfrac><mml:mo>−</mml:mo><mml:mi>T</mml:mi></mml:math></jats:alternatives></jats:inline-formula> phase diagram) of <jats:italic>A</jats:italic><jats:sub><jats:italic>x</jats:italic></jats:sub>Fe<jats:sub>2−<jats:italic>y</jats:italic></jats:sub>Se<jats:sub>2</jats:sub> when any of <jats:italic>x</jats:italic>, <jats:italic>y</jats:italic>, <jats:italic>p</jats:italic>, or heat treatment is varied.</jats:p>