Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Huber, Linus

  • Google
  • 1
  • 8
  • 37

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Top-Down Approaches Towards Single Crystal Perovskite Solar Cells37citations

Places of action

Chart of shared publication
Schneider, Peter Maximilian
1 / 1 shared
Shankar, Karthik
1 / 4 shared
Wiltshire, Benjamin D.
1 / 1 shared
Sura, Anton
1 / 1 shared
Müller-Buschbaum, Peter
1 / 471 shared
Schlipf, Johannes
1 / 20 shared
Pantle, Florian
1 / 3 shared
Askar, Abdelrahman M.
1 / 1 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Schneider, Peter Maximilian
  • Shankar, Karthik
  • Wiltshire, Benjamin D.
  • Sura, Anton
  • Müller-Buschbaum, Peter
  • Schlipf, Johannes
  • Pantle, Florian
  • Askar, Abdelrahman M.
OrganizationsLocationPeople

article

Top-Down Approaches Towards Single Crystal Perovskite Solar Cells

  • Schneider, Peter Maximilian
  • Shankar, Karthik
  • Wiltshire, Benjamin D.
  • Sura, Anton
  • Huber, Linus
  • Müller-Buschbaum, Peter
  • Schlipf, Johannes
  • Pantle, Florian
  • Askar, Abdelrahman M.
Abstract

<jats:title>Abstract</jats:title><jats:p>Solar cells employing hybrid perovskites have proven to be a serious contender versus established thin-film photovoltaic technologies. Typically, current photovoltaic devices are built up layer by layer from a transparent substrate (bottom-up approach), while the deposition of the perovskite layer itself comes with many challenges including the control of crystal size, nucleation density and growth rate. On the other hand, single crystals have been used with great success for studying the fundamental properties of this new class of optoelectronic materials. However, optoelectronic devices fabricated from single crystals often employ different materials than in their thin film counterparts. Here, we demonstrate various top-down approaches for low-temperature processed organic-inorganic metal halide perovskite single crystal devices. Our approach uses common and well-established material combinations that are often used in polycrystalline thin film devices. The use of a polymer bezel allows easier processing of small crystals and the fabrication of solution-processed, free-standing perovskite single crystal devices. All in all these approaches can supplement other measurements of more fundamental material properties often requiring perovskite single crystals by rendering a photovoltaic characterization possible on the very same crystal with comparable material combinations as in thin film devices.</jats:p>

Topics
  • Deposition
  • density
  • perovskite
  • polymer
  • single crystal
  • thin film