Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Anraku, Shinya

  • Google
  • 1
  • 6
  • 15

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Swelling Inhibition of Liquid Crystalline Colloidal Montmorillonite and Beidellite Clays by DNA15citations

Places of action

Chart of shared publication
Yamaguchi, Naoya
1 / 1 shared
Davidson, Patrick
1 / 13 shared
Paineau, Erwan
1 / 13 shared
Michot, Laurent J.
1 / 1 shared
Safinya, Cyrus R.
1 / 1 shared
Miyamoto, Nobuyoshi
1 / 3 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Yamaguchi, Naoya
  • Davidson, Patrick
  • Paineau, Erwan
  • Michot, Laurent J.
  • Safinya, Cyrus R.
  • Miyamoto, Nobuyoshi
OrganizationsLocationPeople

article

Swelling Inhibition of Liquid Crystalline Colloidal Montmorillonite and Beidellite Clays by DNA

  • Yamaguchi, Naoya
  • Anraku, Shinya
  • Davidson, Patrick
  • Paineau, Erwan
  • Michot, Laurent J.
  • Safinya, Cyrus R.
  • Miyamoto, Nobuyoshi
Abstract

<jats:title>Abstract</jats:title><jats:p>Exploring the interaction of nucleic acids with clay minerals is important to understand such issues as the persistence in soils of biomolecules and the appearance of genetic polymers in prebiotic environments. Colloidal dispersions of double stranded DNA and clay nanosheets may also provide interesting model systems to study the statistical physics of mixtures of semi-flexible rods and plates. Here, we show that adding very small amounts of DNA to liquid-crystalline montmorillonite and beidellite smectite clay suspensions strongly widens the isotropic/nematic phase coexistence region. Moreover, a spectroscopic study shows that, upon DNA addition, the first DNA molecules adsorb onto the clay particles. Remarkably, synchrotron small-angle X-ray scattering experiments reveal that the average distance between the clay sheets, in the nematic phase at coexistence, decreases with increasing DNA concentration and that the inhibition of swelling by DNA becomes almost independent of clay concentration. We interpret this DNA-mediated attraction between clay nanosheets by bridging conformations of DNA strands (plates on a string structure). In addition to bridging, DNA chains can form “loops” between sections adsorbed on the same particle, giving rise to sheet repulsions due to protruding loops. This interpretation agrees with the observed inter-clay spacings being dependent only on the DNA concentration.</jats:p>

Topics
  • impedance spectroscopy
  • mineral
  • dispersion
  • polymer
  • phase
  • experiment
  • isotropic
  • X-ray scattering