Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Schmalz, Julius

  • Google
  • 1
  • 13
  • 112

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Wide Band Low Noise Love Wave Magnetic Field Sensor System112citations

Places of action

Chart of shared publication
Meyners, Dirk
1 / 2 shared
Schmidt, Gerhard
1 / 8 shared
Quandt, Eckhard
1 / 49 shared
Mccord, Jeffrey
1 / 40 shared
Knöchel, Reinhard
1 / 1 shared
Durdaut, Phillip
1 / 2 shared
Faupel, Franz
1 / 46 shared
Spetzler, Benjamin
1 / 4 shared
Kittmann, Anne
1 / 2 shared
Zabel, Sebastian
1 / 1 shared
Höft, Michael
1 / 3 shared
Gerken, Martina
1 / 4 shared
Reermann, Jens
1 / 1 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Meyners, Dirk
  • Schmidt, Gerhard
  • Quandt, Eckhard
  • Mccord, Jeffrey
  • Knöchel, Reinhard
  • Durdaut, Phillip
  • Faupel, Franz
  • Spetzler, Benjamin
  • Kittmann, Anne
  • Zabel, Sebastian
  • Höft, Michael
  • Gerken, Martina
  • Reermann, Jens
OrganizationsLocationPeople

article

Wide Band Low Noise Love Wave Magnetic Field Sensor System

  • Meyners, Dirk
  • Schmidt, Gerhard
  • Quandt, Eckhard
  • Mccord, Jeffrey
  • Knöchel, Reinhard
  • Durdaut, Phillip
  • Faupel, Franz
  • Spetzler, Benjamin
  • Kittmann, Anne
  • Zabel, Sebastian
  • Höft, Michael
  • Gerken, Martina
  • Schmalz, Julius
  • Reermann, Jens
Abstract

<jats:title>Abstract</jats:title><jats:p>We present a comprehensive study of a magnetic sensor system that benefits from a new technique to substantially increase the magnetoelastic coupling of surface acoustic waves (SAW). The device uses shear horizontal acoustic surface waves that are guided by a fused silica layer with an amorphous magnetostrictive FeCoSiB thin film on top. The velocity of these so-called Love waves follows the magnetoelastically-induced changes of the shear modulus according to the magnetic field present. The SAW sensor is operated in a delay line configuration at approximately 150 MHz and translates the magnetic field to a time delay and a related phase shift. The fundamentals of this sensor concept are motivated by magnetic and mechanical simulations. They are experimentally verified using customized low-noise readout electronics. With an extremely low magnetic noise level of ≈100 pT/<jats:inline-formula><jats:alternatives><jats:tex-math>{{{Hz}}}</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msqrt><mml:mrow><mml:mi>Hz</mml:mi></mml:mrow></mml:msqrt></mml:math></jats:alternatives></jats:inline-formula>, a bandwidth of 50 kHz and a dynamic range of 120 dB, this magnetic field sensor system shows outstanding characteristics. A range of additional measures to further increase the sensitivity are investigated with simulations.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • amorphous
  • phase
  • thin film
  • simulation