Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kadletz, P. M.

  • Google
  • 6
  • 49
  • 154

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2018In Situ Neutron Diffraction Analyzing Stress-Induced Phase Transformation and Martensite Elasticity in [001]-Oriented Co<inf>49</inf>Ni<inf>21</inf>Ga<inf>30</inf> Shape Memory Alloy Single Crystals10citations
  • 2017Time-of-Flight Three Dimensional Neutron Diffraction in Transmission Mode for Mapping Crystal Grain Structures43citations
  • 2016Cyclic Degradation of Co<inf>49</inf>Ni<inf>21</inf>Ga<inf>30</inf> High-Temperature Shape Memory Alloy: On the Roles of Dislocation Activity and Chemical Order23citations
  • 2015Functional properties of iron based shape memory alloys containing finely dispersed precipitatescitations
  • 2015Martensite stabilization in shape memory alloys - Experimental evidence for short-range ordering41citations
  • 2015Functional Fatigue and Tension–Compression Asymmetry in [001]-Oriented Co<inf>49</inf>Ni<inf>21</inf>Ga<inf>30</inf> High-Temperature Shape Memory Alloy Single Crystals37citations

Places of action

Chart of shared publication
Lauhoff, C.
1 / 14 shared
Chumlyakov, Y. I.
5 / 18 shared
Gutmann, M. J.
4 / 9 shared
Niendorf, Thomas
6 / 301 shared
Schmahl, W. W.
5 / 10 shared
Krooß, P.
6 / 42 shared
Reul, A.
1 / 4 shared
Somsen, Christoph
1 / 61 shared
Maier, H. J.
4 / 116 shared
Somsen, C.
3 / 28 shared
Niendorf, T.
1 / 11 shared
Günther, J.
1 / 9 shared
Vollmer, M.
1 / 25 shared
Eggeler, G.
1 / 48 shared
Chart of publication period
2018
2017
2016
2015

Co-Authors (by relevance)

  • Lauhoff, C.
  • Chumlyakov, Y. I.
  • Gutmann, M. J.
  • Niendorf, Thomas
  • Schmahl, W. W.
  • Krooß, P.
  • Reul, A.
  • Somsen, Christoph
  • Maier, H. J.
  • Somsen, C.
  • Niendorf, T.
  • Günther, J.
  • Vollmer, M.
  • Eggeler, G.
OrganizationsLocationPeople

article

Time-of-Flight Three Dimensional Neutron Diffraction in Transmission Mode for Mapping Crystal Grain Structures

  • Da Silva Fanta, A. B.
  • Bastos Da Silva Fanta, Alice
  • Tremsin, Anton S.
  • Kadletz, P. M.
  • Iyengar, Srinivasan
  • Moyoshi, Taketo
  • Iyengar, S.
  • Hall, Stephen A.
  • Schmahl, Wolfgang W.
  • Larsen, P. M.
  • Moyoshi, T.
  • Cereser, Alberto
  • Kiyanagi, Ryoji
  • Schmahl, W. W.
  • Shinohara, T.
  • Krooß, P.
  • Hall, S. A.
  • Sales, M.
  • Kadletz, Peter M.
  • Tremsin, A. S.
  • Willendrup, P. K.
  • Steuwer, Axel
  • Strobl, M.
  • Larsen, Peter Mahler
  • Hanashima, Takayasu
  • Krooß, Philipp
  • Cereser, A.
  • Willendrup, Peter Kjær
  • Knudsen, E. B.
  • Schmidt, Sø.
  • Strobl, Markus
  • Schmidt, Søren
  • Sales, Morten
  • Kiyanagi, R.
  • Shinohara, Takenao
  • Hanashima, T.
  • Knudsen, Erik B.
  • Niendorf, Thomas
  • Steuwer, A.
Abstract

The physical properties of polycrystalline materials depend on their microstructure, which is the nano-to centimeter scale arrangement of phases and defects in their interior. Such microstructure depends on the shape, crystallographic phase and orientation, and interfacing of the grains constituting the material. This article presents a new non-destructive 3D technique to study centimeter-sized bulk samples with a spatial resolution of hundred micrometers: time-of-flight three-dimensional neutron diffraction (ToF 3DND). Compared to existing analogous X-ray diffraction techniques, ToF 3DND enables studies of samples that can be both larger in size and made of heavier elements. Moreover, ToF 3DND facilitates the use of complicated sample environments. The basic ToF 3DND setup, utilizing an imaging detector with high spatial and temporal resolution, can easily be implemented at a time-of-flight neutron beamline. The technique was developed and tested with data collected at the Materials and Life Science Experimental Facility of the Japan Proton Accelerator Complex (J-PARC) for an iron sample. We successfully reconstructed the shape of 108 grains and developed an indexing procedure. The reconstruction algorithms have been validated by reconstructing two stacked Co-Ni-Ga single crystals, and by comparison with a grain map obtained by post-mortem electron backscatter diffraction (EBSD).

Topics
  • impedance spectroscopy
  • single crystal
  • grain
  • phase
  • x-ray diffraction
  • neutron diffraction
  • defect
  • iron
  • electron backscatter diffraction