Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kawarasaki, Masaru

  • Google
  • 1
  • 2
  • 46

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Intrinsic Enhancement of Dielectric Permittivity in (Nb + In) co-doped TiO2 single crystals46citations

Places of action

Chart of shared publication
Taniguchi, Hiroki
1 / 7 shared
Terasaki, Ichiro
1 / 6 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Taniguchi, Hiroki
  • Terasaki, Ichiro
OrganizationsLocationPeople

article

Intrinsic Enhancement of Dielectric Permittivity in (Nb + In) co-doped TiO2 single crystals

  • Taniguchi, Hiroki
  • Terasaki, Ichiro
  • Kawarasaki, Masaru
Abstract

<jats:title>Abstract</jats:title><jats:p>The development of dielectric materials with colossal permittivity is important for the miniaturization of electronic devices and fabrication of high-density energy-storage devices. The electron-pinned defect-dipoles has been recently proposed to boost the permittivity of (Nb + In) co-doped TiO<jats:sub>2</jats:sub> to 10<jats:sup>5</jats:sup>. However, the follow-up studies suggest an extrinsic contribution to the colossal permittivity from thermally excited carriers. Herein, we demonstrate a marked enhancement in the permittivity of (Nb + In) co-doped TiO<jats:sub>2</jats:sub> single crystals at sufficiently low temperatures such that the thermally excited carriers are frozen out and exert no influence on the dielectric response. The results indicate that the permittivity attains quadruple of that for pure TiO<jats:sub>2</jats:sub>. This finding suggests that the electron-pinned defect-dipoles add an extra dielectric response to that of the TiO<jats:sub>2</jats:sub> host matrix. The results offer a novel approach for the development of functional dielectric materials with large permittivity by engineering complex defects into bulk materials.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • single crystal
  • defect