Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pujar, Gaurav

  • Google
  • 1
  • 6
  • 14

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Aachen-Heerlen annotated steel microstructure dataset14citations

Places of action

Chart of shared publication
Wesselmecking, Sebastian
1 / 6 shared
Bromuri, Stefano
1 / 1 shared
Krupp, Ulrich
1 / 28 shared
Ackermann, Marc
1 / 5 shared
Iren, Deniz
1 / 1 shared
Gorfer, Julian
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Wesselmecking, Sebastian
  • Bromuri, Stefano
  • Krupp, Ulrich
  • Ackermann, Marc
  • Iren, Deniz
  • Gorfer, Julian
OrganizationsLocationPeople

article

Aachen-Heerlen annotated steel microstructure dataset

  • Wesselmecking, Sebastian
  • Bromuri, Stefano
  • Krupp, Ulrich
  • Ackermann, Marc
  • Pujar, Gaurav
  • Iren, Deniz
  • Gorfer, Julian
Abstract

Studying steel microstructures yields important insights regarding its mechanical characteristics. Within steel, microstructures transform based on a multitude of factors including chemical composition, transformation temperatures, and cooling rates. Martensite-austenite (MA) islands in bainitic steel appear as blocky structures with abstract shapes that are difficult to identify and differentiate from other types of microstructures. In this regard, material science may benefit from machine learning models that are able to automatically and accurately detect these structures. However, the training process of the state-of-the-art machine learning models requires a large amount of high-quality data. In this dataset, we provide 1.705 scanning electron microscopy images along with a set of 8.909 expert-annotated polygons to describe the geometry of the MA islands that appear on the images. We envision that this dataset will be useful for material scientists to explore the relationship between the morphology of bainitic steel and mechanical characteristics. Moreover, computer vision researchers and practitioners may use this data for training state-of-the-art object segmentation models for abstract geometries such as MA islands.

Topics
  • microstructure
  • morphology
  • scanning electron microscopy
  • steel
  • chemical composition
  • machine learning