Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Honigmann, A.

  • Google
  • 2
  • 16
  • 62

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Dynamic matrices with DNA-encoded viscoelasticity for cell and organoid culture60citations
  • 2022Dynamic matrices with DNA-encoded viscoelasticity for advanced cell and organoid culture2citations

Places of action

Chart of shared publication
Lattner, Johanna
1 / 1 shared
Ruland, A.
2 / 2 shared
Peng, Yu-Hsuan
1 / 2 shared
Auernhammer, Günter K.
1 / 3 shared
Gupta, Krishna
2 / 3 shared
Werner, Carsten
1 / 45 shared
Krieg, Elisha
2 / 3 shared
Gerri, Claudia
1 / 1 shared
Hsiao, Syuan-Ku
1 / 2 shared
Gerri, C.
1 / 1 shared
Boye, S.
1 / 1 shared
Maitz, M. F.
1 / 1 shared
Auernhammer, G. K.
1 / 1 shared
Hsiao, S. K.
1 / 1 shared
Werner, C.
1 / 8 shared
Peng, Y.-H.
1 / 1 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Lattner, Johanna
  • Ruland, A.
  • Peng, Yu-Hsuan
  • Auernhammer, Günter K.
  • Gupta, Krishna
  • Werner, Carsten
  • Krieg, Elisha
  • Gerri, Claudia
  • Hsiao, Syuan-Ku
  • Gerri, C.
  • Boye, S.
  • Maitz, M. F.
  • Auernhammer, G. K.
  • Hsiao, S. K.
  • Werner, C.
  • Peng, Y.-H.
OrganizationsLocationPeople

article

Dynamic matrices with DNA-encoded viscoelasticity for cell and organoid culture

  • Lattner, Johanna
  • Ruland, A.
  • Peng, Yu-Hsuan
  • Honigmann, A.
  • Auernhammer, Günter K.
  • Gupta, Krishna
  • Werner, Carsten
  • Krieg, Elisha
  • Gerri, Claudia
  • Hsiao, Syuan-Ku
Abstract

<jats:title>Abstract</jats:title><jats:p>Three-dimensional cell and organoid cultures rely on the mechanical support of viscoelastic matrices. However, commonly used matrix materials lack control over key cell-instructive properties. Here we report on fully synthetic hydrogels based on DNA libraries that self-assemble with ultrahigh-molecular-weight polymers, forming a dynamic DNA-crosslinked matrix (DyNAtrix). DyNAtrix enables computationally predictable and systematic control over its viscoelasticity, thermodynamic and kinetic parameters by changing DNA sequence information. Adjustable heat activation allows homogeneous embedding of mammalian cells. Intriguingly, stress-relaxation times can be tuned over four orders of magnitude, recapitulating mechanical characteristics of living tissues. DyNAtrix is self-healing, printable, exhibits high stability, cyto- and haemocompatibility, and controllable degradation. DyNAtrix-based cultures of human mesenchymal stromal cells, pluripotent stem cells, canine kidney cysts and human trophoblast organoids show high viability, proliferation and morphogenesis. DyNAtrix thus represents a programmable and versatile precision matrix for advanced approaches to biomechanics, biophysics and tissue engineering.</jats:p>

Topics
  • impedance spectroscopy
  • polymer
  • viscoelasticity
  • forming
  • activation