People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Picard, Raphaël
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Coulomb blockade in an atomically thin quantum dot coupled to a tunable Fermi reservoir
Abstract
<p>Gate-tunable quantum-mechanical tunnelling of particles between a quantum confined state and a nearby Fermi reservoir of delocalized states has underpinned many advances in spintronics and solid-state quantum optics. The prototypical example is a semiconductor quantum dot separated from a gated contact by a tunnel barrier. This enables Coulomb blockade, the phenomenon whereby electrons or holes can be loaded one-by-one into a quantum dot1,2. Depending on the tunnel-coupling strength3,4, this capability facilitates single spin quantum bits1,2,5 or coherent many-body interactions between the confined spin and the Fermi reservoir6,7. Van der Waals (vdW) heterostructures, in which a wide range of unique atomic layers can easily be combined, offer novel prospects to engineer coherent quantum confined spins8,9, tunnel barriers down to the atomic limit10 or a Fermi reservoir beyond the conventional flat density of states11. However, gate-control of vdW nanostructures12-16 at the single particle level is needed to unlock their potential. Here we report Coulomb blockade in a vdW heterostructure consisting of a transition metal dichalcogenide quantum dot coupled to a graphene contact through an atomically thin hexagonal boron nitride (hBN) tunnel barrier. Thanks to a tunable Fermi reservoir, we can deterministically load either a single electron or a single hole into the quantum dot. We observe hybrid excitons, composed of localized quantum dot states and delocalized continuum states, arising from ultra-strong spin-conserving tunnel coupling through the atomically thin tunnel barrier. Probing the charged excitons in applied magnetic fields, we observe large gyromagnetic ratios (∼8). Our results establish a foundation for engineering next-generation devices to investigate either novel regimes of Kondo physics or isolated quantum bits in a vdW heterostructure platform.</p>