Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hameed, Sajna

  • Google
  • 1
  • 13
  • 80

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Enhanced superconductivity and ferroelectric quantum criticality in plastically deformed strontium titanate80citations

Places of action

Chart of shared publication
Klein, Avi
1 / 1 shared
Anderson, Zach
1 / 1 shared
Greven, M.
1 / 4 shared
Osborn, R.
1 / 4 shared
Lukas, M.
1 / 1 shared
Ramberger, J.
1 / 1 shared
Yue, L.
1 / 1 shared
Fernandes, Rafael M.
1 / 7 shared
Liu, Y.
1 / 99 shared
Spieker, R. J.
1 / 2 shared
Pelc, Damjan
1 / 2 shared
Krogstad, M. J.
1 / 3 shared
Li, Y.
1 / 95 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Klein, Avi
  • Anderson, Zach
  • Greven, M.
  • Osborn, R.
  • Lukas, M.
  • Ramberger, J.
  • Yue, L.
  • Fernandes, Rafael M.
  • Liu, Y.
  • Spieker, R. J.
  • Pelc, Damjan
  • Krogstad, M. J.
  • Li, Y.
OrganizationsLocationPeople

article

Enhanced superconductivity and ferroelectric quantum criticality in plastically deformed strontium titanate

  • Klein, Avi
  • Anderson, Zach
  • Greven, M.
  • Osborn, R.
  • Lukas, M.
  • Ramberger, J.
  • Yue, L.
  • Fernandes, Rafael M.
  • Liu, Y.
  • Spieker, R. J.
  • Pelc, Damjan
  • Hameed, Sajna
  • Krogstad, M. J.
  • Li, Y.
Abstract

<p>The properties of quantum materials are commonly tuned using experimental variables such as pressure, magnetic field and doping. Here we explore a different approach using irreversible, plastic deformation of single crystals. We show that compressive plastic deformation induces low-dimensional superconductivity well above the superconducting transition temperature (T<sub>c</sub>) of undeformed SrTiO<sub>3</sub>, with evidence of possible superconducting correlations at temperatures two orders of magnitude above the bulk T<sub>c</sub>. The enhanced superconductivity is correlated with the appearance of self-organized dislocation structures, as revealed by diffuse neutron and X-ray scattering. We also observe deformation-induced signatures of quantum-critical ferroelectric fluctuations and inhomogeneous ferroelectric order using Raman scattering. Our results suggest that strain surrounding the self-organized dislocation structures induces local ferroelectricity and quantum-critical dynamics that strongly influence T<sub>c</sub>, consistent with a theory of superconductivity enhanced by soft polar fluctuations. Our results demonstrate the potential of plastic deformation and dislocation engineering for the manipulation of electronic properties of quantum materials.</p>

Topics
  • impedance spectroscopy
  • polymer
  • single crystal
  • theory
  • Strontium
  • dislocation
  • X-ray scattering
  • superconductivity
  • superconductivity