Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Quarterman, P.

  • Google
  • 2
  • 20
  • 426

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Interfacial magnetic characteristics of nearly compensated gadolinium iron garnet2citations
  • 2018Room-temperature high spin–orbit torque due to quantum confinement in sputtered BixSe(1–x) films424citations

Places of action

Chart of shared publication
Garcia-Barriocanal, Javier
1 / 2 shared
Stadler, Bethanie J. H.
1 / 11 shared
Langridge, Sean
1 / 5 shared
Gage, Thomas E.
1 / 2 shared
Grutter, Alexander J.
1 / 4 shared
Yu, Guichuan
1 / 4 shared
Caruana, Andrew J.
1 / 2 shared
Kinane, Christy J.
1 / 2 shared
Grassi, Roberto
1 / 3 shared
Jamali, Mahdi
1 / 2 shared
Manchon, Aurelien
1 / 10 shared
Mkhoyan, K. Andre
1 / 17 shared
Low, Tony
1 / 4 shared
Chen, Jun-Yang
1 / 1 shared
Hickey, Danielle Reifsnyder
1 / 1 shared
Zhang, Delin
1 / 1 shared
Li, Hongshi
1 / 1 shared
Wang, Jian-Ping
1 / 3 shared
Zhao, Zhengyang
1 / 2 shared
Dc, Mahendra
1 / 1 shared
Chart of publication period
2024
2018

Co-Authors (by relevance)

  • Garcia-Barriocanal, Javier
  • Stadler, Bethanie J. H.
  • Langridge, Sean
  • Gage, Thomas E.
  • Grutter, Alexander J.
  • Yu, Guichuan
  • Caruana, Andrew J.
  • Kinane, Christy J.
  • Grassi, Roberto
  • Jamali, Mahdi
  • Manchon, Aurelien
  • Mkhoyan, K. Andre
  • Low, Tony
  • Chen, Jun-Yang
  • Hickey, Danielle Reifsnyder
  • Zhang, Delin
  • Li, Hongshi
  • Wang, Jian-Ping
  • Zhao, Zhengyang
  • Dc, Mahendra
OrganizationsLocationPeople

article

Room-temperature high spin–orbit torque due to quantum confinement in sputtered BixSe(1–x) films

  • Grassi, Roberto
  • Jamali, Mahdi
  • Manchon, Aurelien
  • Mkhoyan, K. Andre
  • Low, Tony
  • Chen, Jun-Yang
  • Hickey, Danielle Reifsnyder
  • Zhang, Delin
  • Li, Hongshi
  • Wang, Jian-Ping
  • Zhao, Zhengyang
  • Quarterman, P.
  • Dc, Mahendra
Abstract

<p>The spin–orbit torque (SOT) that arises from materials with large spin–orbit coupling promises a path for ultralow power and fast magnetic-based storage and computational devices. We investigated the SOT from magnetron-sputtered Bi<sub>x</sub>Se<sub>(1–x)</sub> thin films in Bi<sub>x</sub>Se<sub>(1–x)</sub>/Co<sub>20</sub>Fe<sub>60</sub>B<sub>20</sub> heterostructures by using d.c. planar Hall and spin-torque ferromagnetic resonance (ST-FMR) methods. Remarkably, the spin torque efficiency (θ<sub>S</sub>) was determined to be as large as 18.62 ± 0.13 and 8.67 ± 1.08 using the d.c. planar Hall and ST-FMR methods, respectively. Moreover, switching of the perpendicular CoFeB multilayers using the SOT from the Bi<sub>x</sub>Se<sub>(1–x)</sub> was observed at room temperature with a low critical magnetization switching current density of 4.3 × 10<sup>5</sup> A cm<sup>–2</sup>. Quantum transport simulations using a realistic sp<sup>3</sup> tight-binding model suggests that the high SOT in sputtered Bi<sub>x</sub>Se<sub>(1–x)</sub> is due to the quantum confinement effect with a charge-to-spin conversion efficiency that enhances with reduced size and dimensionality. The demonstrated θ<sub>S</sub>, ease of growth of the films on a silicon substrate and successful growth and switching of perpendicular CoFeB multilayers on Bi<sub>x</sub>Se<sub>(1–x)</sub> films provide an avenue for the use of Bi<sub>x</sub>Se<sub>(1–x)</sub> as a spin density generator in SOT-based memory and logic devices.</p>

Topics
  • density
  • impedance spectroscopy
  • thin film
  • simulation
  • Silicon
  • current density
  • magnetization