Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Prentice, J. C. A.

  • Google
  • 1
  • 5
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Unveiling the quasiparticle behaviour in the pressure-induced high-Tc phase of an iron-chalcogenide superconductorcitations

Places of action

Chart of shared publication
Zajicek, Zachary
1 / 3 shared
Reiss, Pascal
1 / 3 shared
Haghighirad, Amir-Abbas
1 / 5 shared
Sadki, Y.
1 / 3 shared
Coldea, Amalia
1 / 4 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Zajicek, Zachary
  • Reiss, Pascal
  • Haghighirad, Amir-Abbas
  • Sadki, Y.
  • Coldea, Amalia
OrganizationsLocationPeople

article

Unveiling the quasiparticle behaviour in the pressure-induced high-Tc phase of an iron-chalcogenide superconductor

  • Prentice, J. C. A.
  • Zajicek, Zachary
  • Reiss, Pascal
  • Haghighirad, Amir-Abbas
  • Sadki, Y.
  • Coldea, Amalia
Abstract

<jats:title>Abstract</jats:title><jats:p>Superconductivity of iron chalocogenides is strongly enhanced under applied pressure yet its underlying pairing mechanism remains elusive. Here, we present a quantum oscillations study up to 45 T in the high-<jats:italic>T</jats:italic><jats:sub>c</jats:sub> phase of tetragonal FeSe<jats:sub>0.82</jats:sub>S<jats:sub>0.18</jats:sub> up to 22 kbar. Under applied pressure, the quasi-two-dimensional multi-band Fermi surface expands and the effective masses remain large, whereas the superconductivity displays a threefold enhancement. Comparing with chemical pressure tuning of FeSe<jats:sub>1−<jats:italic>x</jats:italic></jats:sub>S<jats:sub><jats:italic>x</jats:italic></jats:sub>, the Fermi surface expands in a similar manner but the effective masses and <jats:italic>T</jats:italic><jats:sub>c</jats:sub> are suppressed. These differences may be attributed to the changes in the density of states influenced by the chalcogen height, which could promote stronger spin fluctuations pairing under pressure. Furthermore, our study also reveals unusual scattering and broadening of superconducting transitions in the high-pressure phase, indicating the presence of a complex pairing mechanism.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • surface
  • phase
  • two-dimensional
  • iron
  • superconductivity
  • superconductivity