Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fuente, T. Northam De La

  • Google
  • 1
  • 8
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Magnetotransport of Sm2Ir2O7 across the pressure-induced quantum-critical phase boundary5citations

Places of action

Chart of shared publication
Goddard, P. A.
1 / 1 shared
Singleton, J.
1 / 16 shared
Coak, Matthew John
1 / 6 shared
Castelnovo, C.
1 / 2 shared
Prabhakaran, D.
1 / 13 shared
Goetze, K.
1 / 1 shared
Boothroyd, A. T.
1 / 3 shared
Tidey, J. P.
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Goddard, P. A.
  • Singleton, J.
  • Coak, Matthew John
  • Castelnovo, C.
  • Prabhakaran, D.
  • Goetze, K.
  • Boothroyd, A. T.
  • Tidey, J. P.
OrganizationsLocationPeople

article

Magnetotransport of Sm2Ir2O7 across the pressure-induced quantum-critical phase boundary

  • Goddard, P. A.
  • Singleton, J.
  • Coak, Matthew John
  • Castelnovo, C.
  • Fuente, T. Northam De La
  • Prabhakaran, D.
  • Goetze, K.
  • Boothroyd, A. T.
  • Tidey, J. P.
Abstract

Rare-earth pyrochlore iridates host two interlocking magnetic sublattices of corner-sharing tetrahedra and can harbour a unique combination of frustrated moments, exotic excitations and highly correlated electrons. They are also the first systems predicted to display both topological Weyl semimetal and axion insulator phases. We have measured the transport and magnetotransport properties of single-crystal Sm<sub>2</sub>Ir<sub>2</sub>O<sub>7</sub> up to and beyond the pressure-induced quantum critical point for all-in-all-out (AIAO) Ir order at p<sub>c</sub> = 63 kbar previously identified by resonant X-ray scattering and close to which Weyl semimetallic behavior has been previously predicted. Our findings overturn the accepted expectation that the suppression of AIAO order should lead to metallic conduction persisting down to zero temperature. Instead, the resistivity-minimum temperature, which tracks the decrease in the AIAO ordering temperature for pressures up to 30 kbar, begins to increase under further application of pressure, pointing to the presence of a second as-yet unidentified mechanism leading to non-metallic behavior. The magnetotransport does track the suppression of Ir magnetism, however, with a strong hysteresis observed only within the AIAO phase boundary, similar to that found for Ho<sub>2</sub>Ir<sub>2</sub>O<sub>7</sub> and attributed to plastic deformation of Ir domains. Around p<sub>c</sub> we find the emergence of a new type of electronic phase, characterized by a negative magnetoresistance with small hysteresis at the lowest temperatures, and hysteresis-free positive magnetoresistance above approximately 5 K. The temperature dependence of our low-temperature transport data are found to be best described by a model consistent with a Weyl semimetal across the entire pressure range.

Topics
  • polymer
  • resistivity
  • phase
  • X-ray scattering
  • phase boundary