Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Handa, H.

  • Google
  • 1
  • 7
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Terahertz lattice and charge dynamics in ferroelectric semiconductor SnxPb1−xTe12citations

Places of action

Chart of shared publication
Takahashi, Kei
1 / 2 shared
Kawasaki, M.
1 / 40 shared
Takahashi, Youtarou
1 / 1 shared
Tsukazaki, Atsushi
1 / 3 shared
Okamura, Yoshihiro
1 / 1 shared
Tokura, Yoshinori
1 / 11 shared
Yoshimi, Ryutaro
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Takahashi, Kei
  • Kawasaki, M.
  • Takahashi, Youtarou
  • Tsukazaki, Atsushi
  • Okamura, Yoshihiro
  • Tokura, Yoshinori
  • Yoshimi, Ryutaro
OrganizationsLocationPeople

article

Terahertz lattice and charge dynamics in ferroelectric semiconductor SnxPb1−xTe

  • Takahashi, Kei
  • Handa, H.
  • Kawasaki, M.
  • Takahashi, Youtarou
  • Tsukazaki, Atsushi
  • Okamura, Yoshihiro
  • Tokura, Yoshinori
  • Yoshimi, Ryutaro
Abstract

<jats:title>Abstract</jats:title><jats:p>The symmetry breaking induced by the ferroelectric transition often triggers the emergence of topological electronic states such as Weyl fermions in polar metals/semimetals. Such strong coupling between the lattice deformation and electronic states is therefore essentially important for the control of versatile topological phases. Here, we study the terahertz lattice and charge dynamics in ferroelectric semiconductor Sn<jats:sub><jats:italic>x</jats:italic></jats:sub>Pb<jats:sub>1-<jats:italic>x</jats:italic></jats:sub>Te thin films hosting versatile topological phases by means of the terahertz time-domain spectroscopy. With lowering the temperature, the resonant frequency of transverse optical (TO) phonon shows the significant softening and upturn. This temperature anomaly of lattice dynamics directly indicates the displacive-type ferroelectric transition. The resulting phase diagram suggests the enhancement of ferroelectricity in the films possibly due to compressive strain compared with the bulk crystals. The low-energy TO phonon induces the large DC and terahertz dielectric constant even in metallic state. Furthermore, we find that the Born effective charge of phonon mode is enhanced at around the compositions showing the band gap closing associated with the topological transition.</jats:p>

Topics
  • impedance spectroscopy
  • phase
  • thin film
  • dielectric constant
  • semiconductor
  • phase diagram
  • terahertz time-domain spectroscopy