Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mandrus, David G.

  • Google
  • 3
  • 14
  • 46

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024MPX3 van der Waals magnets under pressure (M = Mn, Ni, V, Fe, Co, Cd; X = S, Se)3citations
  • 2022Symmetry progression and possible polar metallicity in NiPS3 under pressure10citations
  • 2020Piezochromism in the magnetic chalcogenide MnPS333citations

Places of action

Chart of shared publication
Matsuoka, Takahiro
2 / 2 shared
Kim, Heung-Sik
1 / 1 shared
Musfeldt, Janice L.
1 / 1 shared
Haglund, Amanda V.
1 / 1 shared
Smith, Kevin
1 / 1 shared
Feng, Erxi
1 / 2 shared
Musfeldt, Janice
2 / 2 shared
Harms, Nathan
2 / 4 shared
Clune, Amanda
2 / 2 shared
Smith, Jesse S.
1 / 5 shared
Haglund, Amanda
1 / 1 shared
Smith, Kevin A.
1 / 1 shared
Vanderbilt, David
1 / 1 shared
Liu, Zhenxian
1 / 3 shared
Chart of publication period
2024
2022
2020

Co-Authors (by relevance)

  • Matsuoka, Takahiro
  • Kim, Heung-Sik
  • Musfeldt, Janice L.
  • Haglund, Amanda V.
  • Smith, Kevin
  • Feng, Erxi
  • Musfeldt, Janice
  • Harms, Nathan
  • Clune, Amanda
  • Smith, Jesse S.
  • Haglund, Amanda
  • Smith, Kevin A.
  • Vanderbilt, David
  • Liu, Zhenxian
OrganizationsLocationPeople

article

Piezochromism in the magnetic chalcogenide MnPS3

  • Haglund, Amanda
  • Musfeldt, Janice
  • Mandrus, David G.
  • Smith, Kevin A.
  • Harms, Nathan
  • Vanderbilt, David
  • Clune, Amanda
  • Liu, Zhenxian
Abstract

<jats:title>Abstract</jats:title><jats:p>van der Waals materials are exceptionally responsive to external stimuli. Pressure-induced layer sliding, metallicity, and superconductivity are fascinating examples. Inspired by opportunities in this area, we combined high-pressure optical spectroscopies and first-principles calculations to reveal piezochromism in MnPS<jats:sub>3</jats:sub>. Dramatic color changes (green → yellow → red → black) take place as the charge gap shifts across the visible regime and into the near infrared, moving systematically toward closure at a rate of approximately −50 meV/GPa. This effect is quenched by the appearance of the insulator–metal transition. In addition to uncovering an intriguing and tunable functionality that is likely to appear in other complex chalcogenides, the discovery that piezochromism can be deterministically controlled at room temperature accelerates the development of technologies that take advantage of stress-activated modification of electronic structure.</jats:p>

Topics
  • impedance spectroscopy
  • superconductivity
  • superconductivity