Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kok, John M. M. De

  • Google
  • 4
  • 10
  • 173

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2017Interface strength and degradation of adhesively bonded porous aluminum oxides43citations
  • 2017Towards Cr(VI)-free anodization of aluminum alloys for aerospace adhesive bonding applications65citations
  • 2017Adhesive bonding and corrosion performance investigated as a function of auminum oide chemistry and adhesives17citations
  • 2015XPS Analysis of the Surface Chemistry and Interfacial Bonding of Barrier-Type Cr(VI)-Free Anodic Oxides48citations

Places of action

Chart of shared publication
Terryn, Herman
4 / 124 shared
Gudla, Visweswara Chakravarthy
1 / 41 shared
Abrahami, Shoshan T.
1 / 3 shared
Ambat, Rajan
1 / 142 shared
Mol, Johannes M. C.
2 / 12 shared
Abrahami, Shoshan
3 / 10 shared
Mol, Arjan
1 / 64 shared
Hauffman, T.
1 / 2 shared
Mol, Johannes M.
1 / 1 shared
Hauffman, Tom
1 / 59 shared
Chart of publication period
2017
2015

Co-Authors (by relevance)

  • Terryn, Herman
  • Gudla, Visweswara Chakravarthy
  • Abrahami, Shoshan T.
  • Ambat, Rajan
  • Mol, Johannes M. C.
  • Abrahami, Shoshan
  • Mol, Arjan
  • Hauffman, T.
  • Mol, Johannes M.
  • Hauffman, Tom
OrganizationsLocationPeople

article

Interface strength and degradation of adhesively bonded porous aluminum oxides

  • Terryn, Herman
  • Gudla, Visweswara Chakravarthy
  • Abrahami, Shoshan T.
  • Kok, John M. M. De
  • Ambat, Rajan
  • Mol, Johannes M. C.
Abstract

For more than six decades, chromic acid anodizing has been the main step in the surface treatment of aluminum for adhesivelybonded aircraft structures. Soon this process, known for producing a readily adherent oxide with an excellent corrosion resistance,will be banned by strict international environmental and health regulations. Replacing this traditional process in a high-demandingand high-risk industry such as aircraft construction requires an in-depth understanding of the underlying adhesion and degradationmechanisms at the oxide/resin interface resulting from alternative processes. The relationship between the anodizing conditions insulfuric and mixtures of sulfuric and phosphoric acid electrolytes and the formation and durability of bonding under variousenvironmental conditions was investigated. Scanning electron microscopy was used to characterize the oxide features. Selectedspecimens were studied with transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy to measureresin concentration within structurally different porous anodic oxide layers as a function of depth. Results show that there are twocritical morphological aspects for strong and durable bonding. First, a minimum pore size is pivotal for the formation of a stableinterface, as reflected by the initial peel strengths. Second, the increased surface roughness of the oxide/resin interface caused byextended chemical dissolution at higher temperature and higher phosphoric acid concentration is crucial to assure bond durabilityunder water ingress. There is, however, an upper limit to the beneficial amount of anodic dissolution above which bonds are pronefor corrosive degradation. Morphology is, however, not the only prerequisite for good bonding and bond performance alsodepends on the oxides’ chemical composition.

Topics
  • porous
  • impedance spectroscopy
  • pore
  • surface
  • corrosion
  • scanning electron microscopy
  • aluminum oxide
  • aluminium
  • strength
  • chemical composition
  • transmission electron microscopy
  • Energy-dispersive X-ray spectroscopy
  • durability
  • resin