Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hirabayashi, Yu

  • Google
  • 1
  • 5
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Deep learning for three-dimensional segmentation of electron microscopy images of complex ceramic materials12citations

Places of action

Chart of shared publication
Iga, Haruka
1 / 1 shared
Ogawa, Hiroki
1 / 1 shared
Tokuta, Shinnosuke
1 / 1 shared
Yamamoto, Akiyasu
1 / 3 shared
Shimada, Yusuke
1 / 2 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Iga, Haruka
  • Ogawa, Hiroki
  • Tokuta, Shinnosuke
  • Yamamoto, Akiyasu
  • Shimada, Yusuke
OrganizationsLocationPeople

article

Deep learning for three-dimensional segmentation of electron microscopy images of complex ceramic materials

  • Iga, Haruka
  • Ogawa, Hiroki
  • Tokuta, Shinnosuke
  • Yamamoto, Akiyasu
  • Shimada, Yusuke
  • Hirabayashi, Yu
Abstract

<jats:title>Abstract</jats:title><jats:p>The microstructure is a critical factor governing the functionality of ceramic materials. Meanwhile, microstructural analysis of electron microscopy images of polycrystalline ceramics, which are geometrically complex and composed of countless crystal grains with porosity and secondary phases, has generally been performed manually by human experts. Objective pixel-based analysis (semantic segmentation) with high accuracy is a simple but critical step for quantifying microstructures. In this study, we apply neural network-based semantic segmentation to secondary electron images of polycrystalline ceramics obtained by three-dimensional (3D) imaging. The deep-learning-based models (e.g., fully convolutional network and U-Net) by employing a dataset based on a 3D scanning electron microscopy with a focused ion beam is found to be able to recognize defect structures characteristic of polycrystalline materials in some cases due to artifacts in electron microscopy imaging. Owing to the training images with improved depth accuracy, the accuracy evaluation function, intersection over union (IoU) values, reaches 94.6% for U-Net. These IoU values are among the highest for complex ceramics, where the 3D spatial distribution of phases is difficult to locate from a 2D image. Moreover, we employ the learned model to successfully reconstruct a 3D microstructure consisting of giga-scale voxel data in a few minutes. The resolution of a single voxel is 20 nm, which is higher than that obtained using a typical X-ray computed tomography. These results suggest that deep learning with datasets that learn depth information is essential in 3D microstructural quantifying polycrystalline ceramic materials. Additionally, developing improved segmentation models and datasets will pave the way for data assimilation into operando analysis and numerical simulations of in situ microstructures obtained experimentally and for application to process informatics.</jats:p>

Topics
  • impedance spectroscopy
  • grain
  • phase
  • scanning electron microscopy
  • simulation
  • tomography
  • focused ion beam
  • defect
  • porosity
  • ceramic
  • defect structure
  • informatics