Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jeong, Min Woo

  • Google
  • 1
  • 16
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Kinetically controlled metal-elastomer nanophases for environmentally resilient stretchable electronics7citations

Places of action

Chart of shared publication
Makarov, Denys
1 / 26 shared
Knapp, André
1 / 2 shared
Pylypovskyi, Oleksandr
1 / 2 shared
Sander, Oliver
1 / 4 shared
Oh, Jin Young
1 / 5 shared
Avdoshenko, Stanislav
1 / 5 shared
Choi, Won J.
1 / 1 shared
Cho, Chang Hee
1 / 1 shared
Besford, Quinn A.
1 / 4 shared
Makushko, Pavlo
1 / 4 shared
Chae, Soosang
1 / 5 shared
Lee, Tae Il
1 / 1 shared
Chung, Yoon Jang
1 / 1 shared
Zabila, Yevhen
1 / 4 shared
Nebel, Lisa Julia
1 / 3 shared
Fery, Andreas
1 / 34 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Makarov, Denys
  • Knapp, André
  • Pylypovskyi, Oleksandr
  • Sander, Oliver
  • Oh, Jin Young
  • Avdoshenko, Stanislav
  • Choi, Won J.
  • Cho, Chang Hee
  • Besford, Quinn A.
  • Makushko, Pavlo
  • Chae, Soosang
  • Lee, Tae Il
  • Chung, Yoon Jang
  • Zabila, Yevhen
  • Nebel, Lisa Julia
  • Fery, Andreas
OrganizationsLocationPeople

article

Kinetically controlled metal-elastomer nanophases for environmentally resilient stretchable electronics

  • Makarov, Denys
  • Knapp, André
  • Pylypovskyi, Oleksandr
  • Sander, Oliver
  • Jeong, Min Woo
  • Oh, Jin Young
  • Avdoshenko, Stanislav
  • Choi, Won J.
  • Cho, Chang Hee
  • Besford, Quinn A.
  • Makushko, Pavlo
  • Chae, Soosang
  • Lee, Tae Il
  • Chung, Yoon Jang
  • Zabila, Yevhen
  • Nebel, Lisa Julia
  • Fery, Andreas
Abstract

Nanophase mixtures, leveraging the complementary strengths of each component, are vital for composites to overcome limitations posed by single elemental materials. Among these, metal-elastomer nanophases are particularly important, holding various practical applications for stretchable electronics. However, the methodology and understanding of nanophase mixing metals and elastomers are limited due to difficulties in blending caused by thermodynamic incompatibility. Here, we present a controlled method using kinetics to mix metal atoms with elastomeric chains on the nanoscale. We find that the chain migration flux and metal deposition rate are key factors, allowing the formation of reticular nanophases when kinetically in-phase. Moreover, we observe spontaneous structural evolution, resulting in gyrified structures akin to the human brain. The hybridized gyrified reticular nanophases exhibit strain-invariant metallic electrical conductivity up to 156% areal strain, unparalleled durability in organic solvents and aqueous environments with pH 2–13, and high mechanical robustness, a prerequisite for environmentally resilient devices.

Topics
  • Deposition
  • phase
  • strength
  • composite
  • durability
  • electrical conductivity
  • elastomer