Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pindl, Stephan

  • Google
  • 1
  • 15
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Button shear testing for adhesion measurements of 2D materials9citations

Places of action

Chart of shared publication
Reato, Eros
1 / 1 shared
Schätz, Josef
1 / 1 shared
Grundmann, Annika
1 / 2 shared
Lukas, Sebastian
1 / 1 shared
Piacentini, Agata
1 / 1 shared
Nayi, Navin
1 / 1 shared
Vescan, Andrei
1 / 3 shared
Weber, Jonas
1 / 3 shared
Schaffus, Tim
1 / 1 shared
Walter, Jürgen
1 / 5 shared
Lemme, Max Christian
1 / 1 shared
Heuken, Michael
1 / 9 shared
Metzke, Christoph
1 / 1 shared
Streb, Fabian
1 / 2 shared
Kalisch, Holger
1 / 3 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Reato, Eros
  • Schätz, Josef
  • Grundmann, Annika
  • Lukas, Sebastian
  • Piacentini, Agata
  • Nayi, Navin
  • Vescan, Andrei
  • Weber, Jonas
  • Schaffus, Tim
  • Walter, Jürgen
  • Lemme, Max Christian
  • Heuken, Michael
  • Metzke, Christoph
  • Streb, Fabian
  • Kalisch, Holger
OrganizationsLocationPeople

article

Button shear testing for adhesion measurements of 2D materials

  • Reato, Eros
  • Schätz, Josef
  • Grundmann, Annika
  • Lukas, Sebastian
  • Piacentini, Agata
  • Nayi, Navin
  • Vescan, Andrei
  • Weber, Jonas
  • Schaffus, Tim
  • Pindl, Stephan
  • Walter, Jürgen
  • Lemme, Max Christian
  • Heuken, Michael
  • Metzke, Christoph
  • Streb, Fabian
  • Kalisch, Holger
Abstract

<jats:title>Abstract</jats:title><jats:p>Two-dimensional (2D) materials are considered for numerous applications in microelectronics, although several challenges remain when integrating them into functional devices. Weak adhesion is one of them, caused by their chemical inertness. Quantifying the adhesion of 2D materials on three-dimensional surfaces is, therefore, an essential step toward reliable 2D device integration. To this end, button shear testing is proposed and demonstrated as a method for evaluating the adhesion of 2D materials with the examples of graphene, hexagonal boron nitride (hBN), molybdenum disulfide, and tungsten diselenide on silicon dioxide and silicon nitride substrates. We propose a fabrication process flow for polymer buttons on the 2D materials and establish suitable button dimensions and testing shear speeds. We show with our quantitative data that low substrate roughness and oxygen plasma treatments on the substrates before 2D material transfer result in higher shear strengths. Thermal annealing increases the adhesion of hBN on silicon dioxide and correlates with the thermal interface resistance between these materials. This establishes button shear testing as a reliable and repeatable method for quantifying the adhesion of 2D materials.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • molybdenum
  • polymer
  • Oxygen
  • nitride
  • strength
  • Silicon
  • Boron
  • two-dimensional
  • annealing
  • tungsten