People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sutherland, Luke
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024The first demonstration of entirely roll-to-roll fabricated perovskite solar cell modules under ambient room conditionscitations
- 2023Versatile Carbon Electrodes for Record Small, Large, Rigid, and Flexible Perovskite Solar Cells
- 2022Highly Efficient and Fully Roll-to-Roll Processible Perovskite Solar Cells Incorporating Printed Electrodes
- 2022Highly Efficient and Fully Roll-to-Roll Processible Perovskite Solar Cells Incorporating Printed Electrodes
- 2022Vacuum-free and solvent-free deposition of electrodes for roll-to-roll fabricated perovskite solar cellscitations
- 2022Effect of out-gassing from polymeric encapsulant materials on the lifetime of perovskite solar cellscitations
- 2021A Review on Emerging Barrier Materials and Encapsulation Strategies for Flexible Perovskite and Organic Photovoltaicscitations
- 20193D printing of intricate sand cores for complex copper castings
Places of action
Organizations | Location | People |
---|
article
The first demonstration of entirely roll-to-roll fabricated perovskite solar cell modules under ambient room conditions
Abstract
The rapid development of organic-inorganic hybrid perovskite solar cells has resulted in laboratory-scale devices having power conversion efficiencies that are competitive with commercialised technologies. However, hybrid perovskite solar cells are yet to make an impact beyond the research community, with translation to large-area devices fabricated by industry-relevant manufacturing methods remaining a critical challenge. Here we report the first demonstration of hybrid perovskite solar cell modules, comprising serially-interconnected cells, produced entirely using industrial roll-to-roll printing tools under ambient room conditions. As part of this development, costly vacuum-deposited metal electrodes are replaced with printed carbon electrodes. A high-throughput experiment involving the analysis of batches of 1600 cells produced using 20 parameter combinations enabled rapid optimisation over a large parameter space. The optimised roll-to-roll fabricated hybrid perovskite solar cells show power conversion efficiencies of up to 15.5% for individual small-area cells and 11.0% for serially-interconnected cells in large-area modules. Based on the devices produced in this work, a cost of ~0.7 USD W−1 is predicted for a production rate of 1,000,000 m² per year in Australia, with potential for further significant cost reductions.