Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Siao, Ming-Deng

  • Google
  • 1
  • 3
  • 22

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Alkali metal bilayer intercalation in graphene22citations

Places of action

Chart of shared publication
Lin, Yung-Chang
1 / 5 shared
Matsumoto, Rika
1 / 1 shared
Liu, Qiunan
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Lin, Yung-Chang
  • Matsumoto, Rika
  • Liu, Qiunan
OrganizationsLocationPeople

article

Alkali metal bilayer intercalation in graphene

  • Lin, Yung-Chang
  • Siao, Ming-Deng
  • Matsumoto, Rika
  • Liu, Qiunan
Abstract

<jats:title>Abstract</jats:title><jats:p>Alkali metal (AM) intercalation between graphene layers holds promise for electronic manipulation and energy storage, yet the underlying mechanism remains challenging to fully comprehend despite extensive research. In this study, we employ low-voltage scanning transmission electron microscopy (LV-STEM) to visualize the atomic structure of intercalated AMs (potassium, rubidium, and cesium) in bilayer graphene (BLG). Our findings reveal that the intercalated AMs adopt bilayer structures with <jats:italic>hcp</jats:italic> stacking, and specifically a C<jats:sub>6</jats:sub>M<jats:sub>2</jats:sub>C<jats:sub>6</jats:sub> composition. These structures closely resemble the bilayer form of <jats:italic>fcc</jats:italic> (111) structure observed in AMs under high-pressure conditions. A negative charge transferred from bilayer AMs to graphene layers of approximately 1~1.5×10<jats:sup>14</jats:sup> e<jats:sup>−</jats:sup>/cm<jats:sup>−2</jats:sup> was determined by electron energy loss spectroscopy (EELS), Raman, and electrical transport. The bilayer AM is stable in BLG and graphite superficial layers but absent in the graphite interior, primarily dominated by single-layer AM intercalation. This hints at enhancing AM intercalation capacity by thinning the graphite material.</jats:p>

Topics
  • impedance spectroscopy
  • Potassium
  • transmission electron microscopy
  • additive manufacturing
  • electron energy loss spectroscopy
  • Rubidium
  • Accelerator mass spectrometry