Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hunt, Adrian

  • Google
  • 1
  • 10
  • 20

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Elucidating the active phases of CoOx films on Au(111) in the CO oxidation reaction20citations

Places of action

Chart of shared publication
Sautet, Philippe
1 / 8 shared
Oliver-Meseguer, Judit
1 / 2 shared
Falling, Lorenz J.
1 / 4 shared
Kersell, Heath
1 / 1 shared
Yan, George
1 / 1 shared
Jaugstetter, Max
1 / 1 shared
Salmeron, Miquel
1 / 2 shared
Bell, Alexis
1 / 1 shared
Ogasawara, Hirohito
1 / 5 shared
Nemsak, Slavomir
1 / 3 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Sautet, Philippe
  • Oliver-Meseguer, Judit
  • Falling, Lorenz J.
  • Kersell, Heath
  • Yan, George
  • Jaugstetter, Max
  • Salmeron, Miquel
  • Bell, Alexis
  • Ogasawara, Hirohito
  • Nemsak, Slavomir
OrganizationsLocationPeople

article

Elucidating the active phases of CoOx films on Au(111) in the CO oxidation reaction

  • Sautet, Philippe
  • Hunt, Adrian
  • Oliver-Meseguer, Judit
  • Falling, Lorenz J.
  • Kersell, Heath
  • Yan, George
  • Jaugstetter, Max
  • Salmeron, Miquel
  • Bell, Alexis
  • Ogasawara, Hirohito
  • Nemsak, Slavomir
Abstract

<jats:title>Abstract</jats:title><jats:p>Noble metals supported on reducible oxides, like CoO<jats:sub>x</jats:sub> and TiO<jats:sub>x</jats:sub>, exhibit superior activity in many chemical reactions, but the origin of the increased activity is not well understood. To answer this question we studied thin films of CoO<jats:sub>x</jats:sub> supported on an Au(111) single crystal surface as a model for the CO oxidation reaction. We show that three reaction regimes exist in response to chemical and topographic restructuring of the CoO<jats:sub>x</jats:sub> catalyst as a function of reactant gas phase CO/O<jats:sub>2</jats:sub> stoichiometry and temperature. Under oxygen-lean conditions and moderate temperatures (≤150 °C), partially oxidized films (CoO<jats:sub>x&lt;1</jats:sub>) containing Co<jats:sup>0</jats:sup> were found to be efficient catalysts. In contrast, stoichiometric CoO films containing only Co<jats:sup>2+</jats:sup> form carbonates in the presence of CO that poison the reaction below 300 °C. Under oxygen-rich conditions a more oxidized catalyst phase (CoO<jats:sub>x&gt;1</jats:sub>) forms containing Co<jats:sup>3+</jats:sup> species that are effective in a wide temperature range. Resonant photoemission spectroscopy (ResPES) revealed the unique role of Co<jats:sup>3+</jats:sup> sites in catalyzing the CO oxidation. Density function theory (DFT) calculations provided deeper insights into the pathway and free energy barriers for the reactions on these oxide phases. These findings in this work highlight the versatility of catalysts and their evolution to form different active phases, both topological and chemically, in response to reaction conditions exposing a new paradigm in the catalyst structure during operation.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • surface
  • single crystal
  • theory
  • thin film
  • Oxygen
  • density functional theory
  • gas phase