Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Taylor, Nicole K.

  • Google
  • 1
  • 12
  • 23

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Limits to the strain engineering of layered square-planar nickelate thin films23citations

Places of action

Chart of shared publication
Goodge, Berit
1 / 2 shared
Paik, Hanjong
1 / 3 shared
Mason, Jarad
1 / 2 shared
Kourkoutis, Lena F.
1 / 7 shared
Baggari, Ismail El
1 / 1 shared
Botana, Antia S.
1 / 1 shared
Ferenc Segedin, Dan
1 / 1 shared
Ndiaye, Alpha
1 / 4 shared
Brooks, Charles M.
1 / 1 shared
Doyle, Spencer
1 / 1 shared
Mundy, Julia
1 / 1 shared
Labollita, Harrison
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Goodge, Berit
  • Paik, Hanjong
  • Mason, Jarad
  • Kourkoutis, Lena F.
  • Baggari, Ismail El
  • Botana, Antia S.
  • Ferenc Segedin, Dan
  • Ndiaye, Alpha
  • Brooks, Charles M.
  • Doyle, Spencer
  • Mundy, Julia
  • Labollita, Harrison
OrganizationsLocationPeople

article

Limits to the strain engineering of layered square-planar nickelate thin films

  • Goodge, Berit
  • Paik, Hanjong
  • Mason, Jarad
  • Kourkoutis, Lena F.
  • Baggari, Ismail El
  • Botana, Antia S.
  • Ferenc Segedin, Dan
  • Ndiaye, Alpha
  • Brooks, Charles M.
  • Doyle, Spencer
  • Taylor, Nicole K.
  • Mundy, Julia
  • Labollita, Harrison
Abstract

<jats:title>Abstract</jats:title><jats:p>The layered square-planar nickelates, Nd<jats:sub><jats:italic>n</jats:italic>+1</jats:sub>Ni<jats:sub><jats:italic>n</jats:italic></jats:sub>O<jats:sub>2<jats:italic>n</jats:italic>+2</jats:sub>, are an appealing system to tune the electronic properties of square-planar nickelates via dimensionality; indeed, superconductivity was recently observed in Nd<jats:sub>6</jats:sub>Ni<jats:sub>5</jats:sub>O<jats:sub>12</jats:sub> thin films. Here, we investigate the role of epitaxial strain in the competing requirements for the synthesis of the <jats:italic>n</jats:italic> = 3 Ruddlesden-Popper compound, Nd<jats:sub>4</jats:sub>Ni<jats:sub>3</jats:sub>O<jats:sub>10</jats:sub>, and subsequent reduction to the square-planar phase, Nd<jats:sub>4</jats:sub>Ni<jats:sub>3</jats:sub>O<jats:sub>8</jats:sub>. We synthesize our highest quality Nd<jats:sub>4</jats:sub>Ni<jats:sub>3</jats:sub>O<jats:sub>10</jats:sub> films under compressive strain on LaAlO<jats:sub>3</jats:sub> (001), while Nd<jats:sub>4</jats:sub>Ni<jats:sub>3</jats:sub>O<jats:sub>10</jats:sub> on NdGaO<jats:sub>3</jats:sub> (110) exhibits tensile strain-induced rock salt faults but retains bulk-like transport properties. A high density of extended defects forms in Nd<jats:sub>4</jats:sub>Ni<jats:sub>3</jats:sub>O<jats:sub>10</jats:sub> on SrTiO<jats:sub>3</jats:sub> (001). Films reduced on LaAlO<jats:sub>3</jats:sub> become insulating and form compressive strain-induced <jats:italic>c</jats:italic>-axis canting defects, while Nd<jats:sub>4</jats:sub>Ni<jats:sub>3</jats:sub>O<jats:sub>8</jats:sub> films on NdGaO<jats:sub>3</jats:sub> are metallic. This work provides a pathway to the synthesis of Nd<jats:sub><jats:italic>n</jats:italic>+1</jats:sub>Ni<jats:sub><jats:italic>n</jats:italic></jats:sub>O<jats:sub>2<jats:italic>n</jats:italic>+2</jats:sub> thin films and sets limits on the ability to strain engineer these compounds via epitaxy.</jats:p>

Topics
  • density
  • compound
  • phase
  • thin film
  • layered
  • defect
  • superconductivity
  • superconductivity