Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Griffitt, S.

  • Google
  • 1
  • 5
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Local inversion-symmetry breaking in a bismuthate high-Tc superconductor11citations

Places of action

Chart of shared publication
Zhai, Dayu
1 / 1 shared
Anderson, Zachary
1 / 1 shared
Pelc, Damjan
1 / 2 shared
Joe, J.
1 / 1 shared
Spaić, Marin
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Zhai, Dayu
  • Anderson, Zachary
  • Pelc, Damjan
  • Joe, J.
  • Spaić, Marin
OrganizationsLocationPeople

article

Local inversion-symmetry breaking in a bismuthate high-Tc superconductor

  • Zhai, Dayu
  • Anderson, Zachary
  • Pelc, Damjan
  • Griffitt, S.
  • Joe, J.
  • Spaić, Marin
Abstract

<jats:title>Abstract</jats:title><jats:p>The doped perovskite BaBiO<jats:sub>3</jats:sub> exhibits a maximum superconducting transition temperature (<jats:italic>T</jats:italic><jats:sub>c</jats:sub>) of 34 K and was the first high-<jats:italic>T</jats:italic><jats:sub>c</jats:sub> oxide to be discovered, yet pivotal questions regarding the nature of both the metallic and superconducting states remain unresolved. Although it is generally thought that superconductivity in the bismuthates is of the conventional <jats:italic>s</jats:italic>-wave type, the pairing mechanism is still debated, with strong electron-phonon coupling and bismuth valence or bond disproportionation possibly playing a role. Here we use diffuse x-ray scattering and Monte Carlo modeling to study the local structure of Ba<jats:sub>1-x</jats:sub>K<jats:sub>x</jats:sub>BiO<jats:sub>3</jats:sub> across its insulator-metal boundary. We find no evidence for either long- or short-range disproportionation, which resolves a major conundrum, as disproportionation and the related polaronic effects are likely not relevant for the metallic and superconducting states. Instead, we uncover nanoscale structural correlations that break inversion symmetry, with far-reaching implications for the electronic physics. This unexpected finding furthermore establishes that the bismuthates belong to the broader classes of materials with hidden spin-orbit coupling and a tendency towards inversion-breaking displacements.</jats:p>

Topics
  • perovskite
  • impedance spectroscopy
  • X-ray scattering
  • superconductivity
  • superconductivity
  • Bismuth