Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tu, Z.

  • Google
  • 1
  • 17
  • 117

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Tunable unconventional kagome superconductivity in charge ordered RbV3Sb5 and KV3Sb5117citations

Places of action

Chart of shared publication
Fernandes, Rafael
1 / 1 shared
Gong, C.
1 / 6 shared
Khasanov, Rustem
1 / 3 shared
Luetkens, Hubertus
1 / 10 shared
Mielke Iii, Charles
1 / 1 shared
Elender, M.
1 / 2 shared
Das, Debarchan
1 / 1 shared
Amato, Alex
1 / 7 shared
Christensen, M. H.
1 / 1 shared
Shumiya, N.
1 / 1 shared
Yin, J.-X.
1 / 1 shared
Hossain, Md Shafayat
1 / 1 shared
Gamsakhurdashvili, Ts.
1 / 1 shared
Dai, Pengcheng
1 / 5 shared
Yin, Q.
1 / 8 shared
Liu, H.
1 / 39 shared
Shi, Y.
1 / 26 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Fernandes, Rafael
  • Gong, C.
  • Khasanov, Rustem
  • Luetkens, Hubertus
  • Mielke Iii, Charles
  • Elender, M.
  • Das, Debarchan
  • Amato, Alex
  • Christensen, M. H.
  • Shumiya, N.
  • Yin, J.-X.
  • Hossain, Md Shafayat
  • Gamsakhurdashvili, Ts.
  • Dai, Pengcheng
  • Yin, Q.
  • Liu, H.
  • Shi, Y.
OrganizationsLocationPeople

article

Tunable unconventional kagome superconductivity in charge ordered RbV3Sb5 and KV3Sb5

  • Fernandes, Rafael
  • Gong, C.
  • Khasanov, Rustem
  • Luetkens, Hubertus
  • Mielke Iii, Charles
  • Elender, M.
  • Das, Debarchan
  • Amato, Alex
  • Tu, Z.
  • Christensen, M. H.
  • Shumiya, N.
  • Yin, J.-X.
  • Hossain, Md Shafayat
  • Gamsakhurdashvili, Ts.
  • Dai, Pengcheng
  • Yin, Q.
  • Liu, H.
  • Shi, Y.
Abstract

<jats:title>Abstract</jats:title><jats:p>Unconventional superconductors often feature competing orders, small superfluid density, and nodal electronic pairing. While unusual superconductivity has been proposed in the kagome metals <jats:italic>A</jats:italic>V<jats:sub>3</jats:sub>Sb<jats:sub>5</jats:sub>, key spectroscopic evidence has remained elusive. Here we utilize pressure-tuned and ultra-low temperature muon spin spectroscopy to uncover the unconventional nature of superconductivity in RbV<jats:sub>3</jats:sub>Sb<jats:sub>5</jats:sub> and KV<jats:sub>3</jats:sub>Sb<jats:sub>5</jats:sub>. At ambient pressure, we observed time-reversal symmetry breaking charge order below <jats:inline-formula><jats:alternatives><jats:tex-math>{T}_{{{{{{{{{1}}}}}}}}}^{*}</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msubsup><mml:mrow><mml:mi>T</mml:mi></mml:mrow><mml:mrow><mml:mi>1</mml:mi></mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow></mml:msubsup><mml:mo>≃</mml:mo></mml:math></jats:alternatives></jats:inline-formula> 110 K in RbV<jats:sub>3</jats:sub>Sb<jats:sub>5</jats:sub> with an additional transition at <jats:inline-formula><jats:alternatives><jats:tex-math>{T}_{{{{{{{{{2}}}}}}}}}^{*}</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msubsup><mml:mrow><mml:mi>T</mml:mi></mml:mrow><mml:mrow><mml:mi>2</mml:mi></mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow></mml:msubsup><mml:mo>≃</mml:mo></mml:math></jats:alternatives></jats:inline-formula> 50 K. Remarkably, the superconducting state displays a nodal energy gap and a reduced superfluid density, which can be attributed to the competition with the charge order. Upon applying pressure, the charge-order transitions are suppressed, the superfluid density increases, and the superconducting state progressively evolves from nodal to nodeless. Once optimal superconductivity is achieved, we find a superconducting pairing state that is not only fully gapped, but also spontaneously breaks time-reversal symmetry. Our results point to unprecedented tunable nodal kagome superconductivity competing with time-reversal symmetry-breaking charge order and offer unique insights into the nature of the pairing state.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • superconductivity
  • superconductivity