Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Losert, Merritt P.

  • Google
  • 1
  • 17
  • 51

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Atomic fluctuations lifting the energy degeneracy in Si/SiGe quantum dots51citations

Places of action

Chart of shared publication
Sammak, Amir
1 / 2 shared
Koelling, Sebastian
1 / 11 shared
Coppersmith, Susan
1 / 1 shared
Xue, Xiao
1 / 1 shared
Scappucci, Giordano
1 / 1 shared
Friesen, Mark
1 / 2 shared
Zheng, Guoji
1 / 1 shared
Samkharadze, Nodar
1 / 3 shared
Moutanabbir, Oussama
1 / 2 shared
Lodari, Mario
1 / 4 shared
Stehouwer, Lucas E. A.
1 / 1 shared
Amitonov, Sergey V.
1 / 3 shared
Wuetz, Brian Paquelet
1 / 1 shared
Vandersypen, Lieven
1 / 1 shared
Mądzik, Mateusz T.
1 / 1 shared
Zwerver, Anne-Marije J.
1 / 1 shared
Philips, Stephan G. J.
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Sammak, Amir
  • Koelling, Sebastian
  • Coppersmith, Susan
  • Xue, Xiao
  • Scappucci, Giordano
  • Friesen, Mark
  • Zheng, Guoji
  • Samkharadze, Nodar
  • Moutanabbir, Oussama
  • Lodari, Mario
  • Stehouwer, Lucas E. A.
  • Amitonov, Sergey V.
  • Wuetz, Brian Paquelet
  • Vandersypen, Lieven
  • Mądzik, Mateusz T.
  • Zwerver, Anne-Marije J.
  • Philips, Stephan G. J.
OrganizationsLocationPeople

article

Atomic fluctuations lifting the energy degeneracy in Si/SiGe quantum dots

  • Sammak, Amir
  • Koelling, Sebastian
  • Coppersmith, Susan
  • Xue, Xiao
  • Scappucci, Giordano
  • Friesen, Mark
  • Zheng, Guoji
  • Samkharadze, Nodar
  • Moutanabbir, Oussama
  • Lodari, Mario
  • Stehouwer, Lucas E. A.
  • Amitonov, Sergey V.
  • Wuetz, Brian Paquelet
  • Losert, Merritt P.
  • Vandersypen, Lieven
  • Mądzik, Mateusz T.
  • Zwerver, Anne-Marije J.
  • Philips, Stephan G. J.
Abstract

<jats:title>Abstract</jats:title><jats:p>Electron spins in Si/SiGe quantum wells suffer from nearly degenerate conduction band valleys, which compete with the spin degree of freedom in the formation of qubits. Despite attempts to enhance the valley energy splitting deterministically, by engineering a sharp interface, valley splitting fluctuations remain a serious problem for qubit uniformity, needed to scale up to large quantum processors. Here, we elucidate and statistically predict the valley splitting by the holistic integration of 3D atomic-level properties, theory and transport. We find that the concentration fluctuations of Si and Ge atoms within the 3D landscape of Si/SiGe interfaces can explain the observed large spread of valley splitting from measurements on many quantum dot devices. Against the prevailing belief, we propose to boost these random alloy composition fluctuations by incorporating Ge atoms in the Si quantum well to statistically enhance valley splitting.</jats:p>

Topics
  • theory
  • random
  • quantum dot
  • alloy composition